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Abstract

Several experimental studies indicate that during sleep induced ripple-like activity
in the hippocampus [21], some synapses are strengthened while others are weakened
[71, 89]. Further, during slow wave sleep, memories become consolidated, i.e. are
stabilized and enhanced [87, 26]. However, the underlying processes of synaptic changes
during sleep are mainly unknown. This study investigates the role of Spike-Timing-
Dependent Plasticity (STDP) and Synaptic Scaling (SS) on the time evolution of
memory representations in the presence of spontaneous, ripple-like activity. Based on
our previous work [98], in this study we show that STDP in combination with SS [105],
enables a spiking neural network to selectively scale up or down synapses depending
on their strength. During this process, synapses are reorganized/consolidated from
a long-tailed unimodal into a stable, bimodal distribution. While this leads to a
down-regulation of the network strength on average, a subset of strong connections
associated with the memory are retained while the temporal order of memory replay is
even enhanced on a single neuron pair basis. In our theoretical model, we use a network
of leaky integrate and fire neurons with STDP, and activity-dependent homeostatic
synaptic scaling. Memories are represented in the form of a FeedForward (FF) -
structure [49]. Spontaneous, ripple-like network activity is caused by fast dendritic
spikes [49] which triggers synaptic changes. In addition, we study STDP and SS over
a wide range of synaptic strengths and stimulus amplitudes. We show that there is
a high dependence between synaptic potentiation and depression and the exact form
of the STDP rule. Further, analytical methods for the estimation of STDP induced
synaptic change are studied and compared with simulations.
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Chapter 1

Background

In this chapter we give an overview over the properties of neurons and neural networks
as well as outline current findings and hypothesis about memory, learning and sleep.
We start by delivering a short background on neurons, synapses and dendrites. Then
neural networks and synaptic plasticity mechanisms are introduced. Subsequent we
review current findings and hypothesis regarding learning spatial tasks with place cells,
the role of memory consolidation and sleep. This will form the basis from which our
model is constructed. With this model we try to answer the question how synapses
may get regulated during sleep, while representations of memory in a neural network
get consolidated.

1.1 Neurons, synapses and dendrites

1.1.1 Neurons

The neuron (Fig. 1.1) is the central processing unit of the brain. It transmits and
modifies the information that it receives from other neurons in a network. Information
is transmitted to other cells in the form of electrical or chemical signals. The neuron
can be divided into three main parts [1]. The dendrite (1), receiving inputs from
other units and transmitting it to the soma (2), which is the processing kernel
of the neuron. The soma generates an electrical output signal, also called action
potential (AP) or spike, whenever the input it receives crosses a certain threshold. This
nonlinear process is the basic principle of neural computation [1]. The signal is then
send to neighboring neurons along the axon (3), a single long fiber. However, recent
experimental observation have shown that not only the soma but also the dendrite
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itself is able to generate electrical signals. Details will be given in section 1.1.3.

Processing of incoming signals

How does the neuron process incoming electrical signals? The neuron is surrounded by
a membrane that is build from lipids that form a bilayer. The extra- and intracellular
space, which is divided by the membrane, inhabit several ion-types of different con-
centrations. The lipid bilayer is in general a very good insulator, thereby prohibiting
the flow of electrical charges from the inside of the cell to the outside or vice versa.
However, embedded in the membrane are different proteins that allow for ion currents
to flow through in an organized manner. At the arrival of an electrical signal, these
proteins, also called ion channels, get activated and thereby change the electrical
potential between the inside and outside of the cell. If the membrane potential crosses
a certain threshold (the spiking threshold), a signal is generated by the soma. Thereby,
the ion flow through these ion channels is, what enables neurons to communicate with
each other. There are many different types of ions involved in the machinery of the
neuronal cell. Fortunately however the basic dynamics of the neuronal membrane
potential can be described by models which only take into account very view ion types.

The reversal and the resting potential

The difference in the membrane potential between interior and exterior of the cell
depends on the difference in ion concentration, which is generated by active ion transport
through the protein channels. At equilibrium, the voltage across the membrane
generated by the ion concentration differences can be described by the Nernst equation:

Eion = kBT

q
ln

( [ion]out

[ion]in

)
(1.1)

Where q is the ion charge, kB the Boltzman constant and T the temperature.
[ion]out and [ion]out are the different concentration outside and inside the membrane.
The concentration of e.g. sodium (Na+) is lower inside the membrane than outside,
generating a positive Nernst potential that lies around 67mV . In Neuroscience the
Nernst potential of an ion type is also called reversal potential since its value determines
at what voltage differences across the membrane some ion type would flow in or out of
the cell. While the membrane potential that fluctuates due to incoming signals lies
below the reversal potential, sodium ions would flow into the cell, lowering the potential
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Axon terminals

Axon

Nucleus
Dendrites

Cell body

Fig. 1.1: The neuron is the primary processing unit of the brain. Here a sketch is shown.
Apart from the nucleus, which contains most of the cell’s genetic material, the neuronal
cell also inhabits the ribosome for protein synthesis and other biological machineries which
are not shown. Within the Cell body or ’soma’ the action potential is generated and send
down the axon. At the axon terminals, the neuron is connected to other neurons via their
dendrites. The dendrites are the part of the neuron where incoming signals are summed
up and transmitted to the soma, which in case of excitatory input might lead to the emis-
sion of a somatic spike. Sketched after [Karpathy]

difference. If the membrane potential would rise above the reversal potential, the
direction of ion flow would reverse. In the absence of any stimuli, the reversal potentials
of all the different ion types together determine the resting membrane potential. The
resting potential usually is about -70 mV [26]. The potential is always measured from
inside the cell relative to the outside.

The generation of a spike

Positively charged ions leaving the cell result in a hyperpolarization of the membrane
potential, i.e. the electric potential becomes more negative. Positive ion flow into
the cell results in the depolarization of the membrane potential. If the depolarization
reaches a certain threshold (spiking threshold), sodium ion channels become highly
active for a short period, resulting in an influx of sodium ions. This results in a peak
in the membrane potential. This peak is shortly after counterbalanced by a potassium
efflux. The action-potential has a strength of several mV and can be transmitted over
large distances along the neurons axon. After a spike, the neuron is reset to a potential
of about -60 mV. Table 2.2 shows some of the typical parameter values of a pyramidal
neuron.
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a
u(t)

t

urest
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Fig. 1.2: The figure shows a sketch of a typical action potential. When the spiking
threshold is reached, the depolarization through sodium influx into the cell takes place.
Subsequent, potassium efflux re-polarizes the cell membrane and eventually hyper-
polarizes it. During the phase of hyper-polarization (refractory period), incoming stimuli
have to overcome a larger potential difference to reach the spiking threshold. Also sodium
channels are inactivated after the initial spike and therefore unable to exhibit another one.

Refractoriness

The refractory period (Fig. 1.2) is a time window after the initialization of a spike,
during which no spike can be generated. The sodium ion channels that get activated
to produce the action potential get inactivated subsequent and remain this way until
the membrane is hyper-polarized. The hyper-polarization is generated by voltage
gated potassium channels. Potassium ions flow out of the cell bringing the membrane
potential below the resting potential. The refractory period ends when the membrane
potential returned to its resting value and sodium channels got activated again. The
refractory period usually lasts for about 2-3 ms.

1.1.2 Synapses

The action potential generated by the neuron travels along the axon and ends at the
axonal terminal of the synapse, which is the connection between two neurons (Fig. 1.3).
The neuron that transmits a signal is called the presynaptic neuron while the receiving
neuron is called postsynaptic. The synapse itself can be divided into three parts.

1. The axon terminal, which is at the presynaptic site,

2. the dendritic spine, which belongs to the postsynaptic neuron

3. and the synaptic cleft, separating the two sites.
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At the arrival of a spike, ion channels at the axonal terminal open, resulting in an
influx of calcium ions. Embedded in the axon terminal are vesicles, structures formed
by a lipid bilayer that encloses neurotransmitter molecules. These vesicles release
neurotransmitters into the synaptic cleft in response to the calcium ion influx. At the
head of the dendritic spine sits a structure called the postsynaptic density (PSD). The
PSD contains neural receptors that are associated with specific ion channels that get
activated at the conjunction with the neurotransmitters.

inhibitory and excitatory synapses

Whether the binding of neurotransmitter molecules to the receptors triggers ion in-
or efflux depends on the receptor type and its associated ion channels. Lowering
(hyperpolarizing) the membrane potential, i.e. efflux of positively charged ions (K+)
or influx of negatively charged ions (Cl−), results in a so called inhibitory postsynaptic
potential (IPSP). Inhibitory synapses mostly contain receptors that respond to GABA
(Gamma-aminobutyric acid). The influx of positively charged ions (Na+) results in
an excitatory postsynaptic potential (EPSP). Excitatory synapses mostly contain
receptors that get activated by glutamate (α − amino acid). This process of synaptic
transmission filters the original action potential, resulting in the postsynaptic current
(PSC). Neurons either create inhibitory or excitatory connections with postsynaptic
neurons, which is also known as Dale’s law [94]. Whether a synapse is inhibitory or
excitatory depends on the reversal potential Eion, which depends on the type of ions and
therefore the type of ion-channels that get activated by the receptors. For example, the
reversal potential for inhibitory synapses that activate Cl−-channels is Einh ≈ −70mV .
Excitatory synapses that activate Na+- and K+-channels have a reversal potential of
Eexc ≈ 0mV (ENa+ ≈ 70mV , EK+ ≈ −70mV ) [84]. The concentration of receptors
in the PSD alongside the likelihood of synaptic vesicles to undergo exocytosis at the
arrival of a spike, determines the strength and timing of PSC which is then fed through
the dendritic spine to the soma of the corresponding neuron. It is thought that action
potentials, that propagate back through the dendritic tree, are responsible for signaling
the synapse that the postsynaptic neuron has generated an output spike, which is
important for synaptic plasticity (see section 1.3).
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Axon

Synaptic vesicle

Terminal

Synaptic cleft

Receptor dependend ion channels
Postsynaptic membrane

membrane potential dependend
Ca2

+ ion channel

Neurotransmitter

Fig. 1.3: The synapse enables a neuron to transmit electrical signals from one neuron to
the other by translating that electrical signal into a chemical signal and back. An action
potential that arrives at the axonal site of the synapse triggers a calcium ion influx, which
in turn triggers the release of neurotransmitters into the synaptic cleft. The neurotransmit-
ters bind with receptors (AMPA, NMDA) at the dendritic site, which again triggers ion
flux. The electrical signal evolving from the ion influx is then fed forward to the soma.

1.1.3 Dendrites

The synaptic input, a neuron receives, is combined within the dendritic tree, which is
a structure emerging from the soma of the neuron. The summation of all the incoming
signals in the dendritic tree results in a new, filtered version of the original signals, the
dendritic signal. The size and shape of the membrane potential transient at the soma
in response to the incoming spikes therefore depends on the dendritic structure and its
electrical properties. This results extremely diverse and complex dendritic signaling
properties [45]. Morover, neuronal recordings have shown that dendrites are not only
passive cables, that transmit electrical signals, but that they actively modulate the
signal by voltage gated ion channels, generating so called dendritic spikes[39, 61]. It is
found experimentally that these dendritic spikes are faster and stronger than somatic
spikes, enabling sub-millisecond precision of input-output transformation [6]. The
voltage threshold for the generation of these dendritic spikes is higher than for the
generation of action potentials in the soma, therefore requiring strong synchronous
synaptic inputs. In this regard the dendritic spike generation process can be interpreted
as a detector for strong and synchronous events, which might be an important feature
in neuronal communication and synaptic plasticity [45, 51]. A model that describes
the form and generation process of these dendritic spikes has been introduced in [66].
The same model has been used to identify dendritic spikes as a possible mechanism for
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sharp wave ripples and replay generation, observed in the hippocampus during slow
wave sleep (see section 1.6).

1.2 Neural Networks
In the brain, neurons are densely packed with about 104 cells within a cubic millimeter
[42]. Each neuron has up to 104 connections to postsynaptic neurons. Therefore, the
main source of noise that a neuron is exposed to comes from the high amount of synaptic
input it receives [82]. To detangle the connectivity of the brain is of great interest and
researchers have tried to figure out the underlying principles for many decades[22, 15, 96].
One approach is to look for anomalies in synaptic probability distributions that differ
from what one would expect from a completely random network. For instance, synaptic
weight distributions differ from neuron type to neuron type and from brain region
to brain region [90]. Experimental distributions of synaptic weights show that the
range of synaptic weights in the cortex is much higher than in the hippocampus or the
cerebellum. The mean synaptic weight in form of the EPSP amplitude is approximately
0.1 mV in the hippocampus and cerebellum, while in the cortex EPSPs are much
stronger on average with ≈ 1 mV [9]. Further, neuroscientists have been debating
about weather synaptic weight distributions are unimodal or bimodal [9]. Experimental
synaptic weight distributions often seem to be unimodal, while they are also extremely
skewed [29]. However, it has been observed in experiments that EPSPs can take values
up to 8 − 10mV , which is much higher than the average, supporting the hypothesis of
at least weakly bimodal synaptic distributions [100, 59, 62, 92].

1.3 Synaptic plasticity
Biological neural networks are not static but plastic. Their connections underly constant
changes due to mechanisms of synaptic plasticity. These are distinguished between
homeostatic mechanisms, depending on the postsynaptic activity and Hebbian mecha-
nisms, which rely also on the correlated firing of the post- and presynaptic. There exist
two main types of theoretical neuron models: spiking neuron models and rate models.
Rate models neglects the single spikes and only model the neuronal activity, i.e. the
firing rate in spikes per second. Whereas spiking models, which are more biologically ac-
curate, model the single spikes. Hebbian plasticity models differ, depending on whether
a spiking or rate model is used. In the current work we focus on spiking neural networks.
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Spike-timing-dependent plasticity

A well established form of a Hebbian plasticity is spike-timing-dependent plasticity
(STDP). The key idea of STDP is that only those connections between neurons should
experience potentiation that have the "right" timing. "The timing must be such that
synapses that contribute to firing the postsynaptic neuron are maximally strengthened.
Hence long-term potentiation (LTP) must be maximal if the spike arrives at the synapse
1 or 2 ms before the postsynaptic spike so as to compensate for the rise time of the
excitatory postsynaptic potential" (cited from [40]). In addition, if a presynaptic spike
arrives shortly after the emission of a postsynaptic spike, the synapse experiences long
term depression (LTD).

LTP vs. LTD: The function describing the synaptic change depending on the
spike-timing can take different forms but is in general described by a LTP domain,
describing the synaptic change for positive spike-timing (tpost − tpre > 0) and a LTD
domain (tpost − tpre < 0). Whether the STDP function is dominated1 by the LTP
domain or the LTD domain seems to be different from brain region to brain region [1].
Different results in this regard are however also known for same brain regions depending
on stimulus protocols and other factors [1]. In layer 2/3 pyramidal neurons and also in
the hippocampus, LTD is found in some scenarios to dominate over LTP, i.e. when
pre- and postsynaptic spiking occur completely random, LTD will be induced. "This
makes functional sense, because it weakens input that "accidentily" fire in approximate
coincidence with postsynaptic action potentials, but that do not consistently contribute
to evoking them" (cited from [1], p. 1180). As it is still not clear what exact functional
purposes these different forms of STDP have, we do not restrict the study of our model
to one form of STDP but investigate the impact from changing STDP from LTD- to
LTP-dominant.

While the mechanism of STDP is powerful, it comes with the downside of being
unstable. As those synapses that get strengthened receive as a result more correlated
signals from the corresponding post- and presynaptic neuron, such that they eventually
grow unbounded. Therefore the excitatory drive to a neuron needs to be regulated in
such a way that the network can operate stable. This issue can be solved by either

1The term dominance is not strictly defined but can be viewed as to whether the integral over
the negative part of the function is greater than the integral over the positive part or vice versa.
Another way to define dominance would be, to demand that, if both neurons are uncorrelated, the
ensemble averaged synaptic change induced by STDP should be zero if STDP is balanced, positive if
it is LTP-dominated and negative if it is LTD-dominated
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introducing weight depended STDP [108] or homeostatic plasticity mechanisms that
scale down excitatory synapses if the postsynaptic activity or the excitatory synaptic
strength exceeds a certain level [1].

Synaptic scaling

Synaptic scaling is a proposed homeostatic plasticity mechanism that counteracts the
changes introduced by STDP induced potentiation [106]. In contrast to Hebbian
plasticity such a mechanism is not necessarily synapse specific but acts global on all
synapses of a postsynaptic neuron. While Hebbian plasticity is considered to be a
relatively fast process, homeostatic plasticity has been generally considered to be slow.
However there has been recent evidence that homeostatic plasticity might also act
rapid and local [104] (See also SHY in section 1.6). In [97] it has been demonstrated
that weight dependent synaptic scaling in a rate model is able to stabilize synaptic
change, where synaptic scaling with a convex non-linear weight dependence generically
stabilizes excitatory and inhibitory synapses, whereas linear weight dependence only
stabilizes under certain conditions. For more details see Methods.

1.4 Spatial learning and place cells
Learning is closely related to synaptic plasticity. How we learn and therefore how
the brain encodes information is however to a large degree still unknown. One way
to get an idea of how information is processed and stored in the brain is to look for
reliable links between neural activity and behavior. O’Keefe et al.[74] found that
hippocampal cells recorded in free moving rats respond specifically to the animals
location. Different cells responded to different locations, therefore, they are known as
place cells. The associated locations in which a place cell is active define the place
field of that cell. Besides that, studies showed that place cell also encode a memory
of locations the animal has visited in the past, supporting the hypothesis that the
hippocampus has a role in the memory and learning of spatial tasks [76]. Further it was
shown that firing patterns during exploration were replayed during sleep subsequent to
the exploration phase [80] and that this replay of place selective firing appears during
sharp wave/ripples (see below) [77]. The hippocampus is usually subdivided into the
regions CA1-CA4, where the CA1- and CA3-pyramidal neurons are most involved in
spatial learning and replay. The CA1 region is largely parallel organized and displays
the larger amount of place field related cells, whereas CA3 is highly recurrent. How
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exactly spatial memories are represented in the CA1 and CA3 neural network is not
entirely clear. In [49] , Jahnke et al. introduced a phenomenological model where
representations of spatial memories are encoded in form of feedforward structures that
shows parallels to what can be observed during spatial learning in experiments [49].

1.5 Memory and consolidation
Memory Consolidation describes the process of the formation of long lasting memories
subsequent to learning. It has been argued and experimental observations support this
view, that memory consolidation mainly occurs during sleep [101, 32, 31]. Consolidation
is commonly divided into three levels of description. The synaptic consolidation, the
system consolidation and the network consolidation level [32, 31, 106, 98].

Synaptic consolidation
Synaptic consolidation describes the process of transferring information into long-term
memory at the local synaptic level. The information is usually assumed to be encoded
in form of a sequence of potentiated synaptic connections. The general hypothesis
assumes that for synaptic consolidation a directed stimulus is needed that triggers the
activation of a memory trace, resulting in a signaling cascade. This will in turn lead to
a modification of gene expression and the synthesis of gene products that change the
synaptic efficacy and protect the synapse from "amnesic agents" that would prevent
the transformation of the memory to a long term state [52]. The process of synaptic
consolidation is assumed to be fast compared to system consolidation, meaning that it
will act on a timescale of hours.

System consolidation
System consolidation is a slow process, taking hours to days. When completed it is
thought to be long lasting, ranging time scales from days to even years. The idea
behind system consolidation is the reorganization of a memory from a temporal device,
which accounts for our short-term memory, to a long lasting representation in a different
region of the brain. Short-term storage is thought to be connected to the hippocampus
and long term-storage to the neocortex [20], [14].

Network consolidation
The synaptic homeostasis hypothesis (See section 1.6) states that during sleep the
brain has to get back into a homeostatic state [101]. The homeostatic state is defined
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Fig. 1.4: In a network of rate coded neurons an external stimulus of a certain rate is fed
into the network (a, b, top). For low stimuli rates, the synaptic weights stay at a control
level (figure a,b bottom, 100-160 h). At certain points in time, a high rate stimulus of
120 Hz is introduced for 15 min. (figure a, b top, yellow peaks). For the control group,
the weight change due to these stimuli is small (figure a,b, bottom). At time 180 h a
training stimulus is introduced which leads to a significant growth in the synaptic weights
(figure a,b top: blue peak, bottom: red lines). In panel a the training stimulus has been
slightly weaker then in panel b, resulting in a smaller synaptic growth in a compared to
b. Subsequent to the training stimulus, further short (15 min.) consolidation stimuli are
introduced, resulting in strong consolidation of synapses in panel b, whereas in panel a the
synaptic weights are basically unaffected. The results shown have been reproduced from
[98].

as a state in which neural activity and synaptic connections are stable and optimized
for task performance, memory retrieval and learning. During wake however, synaptic
connections get potentiated due to external stimuli, driving the brain out of the
homeostatic state. In order to get back into the homeostatic state, some synapses
need to get scaled up while others get scaled down, supporting forgetting as well as
consolidation [102]. In [98] a model of Hebbian learning combined with homeostatic
synaptic scaling [99] was used that enabled a network of rate neurons to distinguish
between synapses relevant for long-term storage and those not by distinct up and down
scaling of connections depending on their synaptic weight (see fig. 1.4). In the current
work a similar approach is used for a spiking neural network.

1.6 Sleep
Sleep in mammals consists of two main sleep stages: slow-wave sleep (SWS) and
rapid-eye-movement (REM) sleep. These stages are accompanied by electrical field
potential oscillations originating from the spiking activity of the neurons in the brain.
During SWS oscillations of about 0.8 Hz are observed in the neocortex, while the
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hippocampus exhibits sharp waves and ripples in the range of 100-300 Hz and the tha-
lamus displays so called spindles (10-15 Hz) [87]. The hippocampal ripples are tightly
linked to the slow waves observed in the neocortex [69], leading to the assumption that
neocortical slow waves group the activity in the brain during sleep. Sharp-wave/ripples
occur together with the replay of sequences that where encoded during wake [70],
supporting the hypothesis that the hippocampus is involved in the consolidation of
previously encoded memories (see section 1.5). That sleep plays a crucial role in this
overall process has long been known. Studies show that sleep deprivation results in
cognitive problems and memory loss [56]. However details about the mechanisms
behind memory consolidation during sleep are still not entirely clear. In recent years it
has become evident, that, while during wake the neural excitability increases, sleep
is associated to synaptic downscaling [48], [109], [27]. Down regulation of synapses
has recently also been connected to hippocampal ripples during Slow wave sleep, [71].
This supports the hypothesis that sleep not only plays an important role in memory
consolidation but also in forgetting .

Synaptic homeostasis hypothesis (SHY)
The synaptic homeostasis hypothesis (SHY) [101] suggests that during sleep the
synaptic connections formed during wake get back into a homeostatic state. While
encoding new information, synaptic connections get scaled up and the brain will
eventually end up in an overly excited state with many strong connections. These
prohibit the brain to operate in a balanced, stable state and also aggravates the
integration/encoding of new information. To get back into a homeostatic state, the
SHY states that during SWS overly strong connections get pruned, non relevant
structures get scaled down while relevant memory representations get scaled up and
eventually consolidated. This renormalization of connectivity is driven by spontaneous
activity, which depends on the connection strength. This activity dependent down-
selection should occur mainly during sleep, when the brain is off-line. This enables the
brain to get a less biased sample of the memory environment that is represented in the
spontaneous activity that would be altered by external sensory input [102].



Chapter 2

Models and Methods

In this chapter we introduce the models and methods for constructing a neural network
that has many of the properties that have been described in the Background section.
We start with a model for neurons and synaptic signals. Next the properties of our
network topology are specified. Then two models for spike-timing dependent plasticity
and synaptic scaling are introduced as well as a method for learning spatial tasks. At
last, measures for describing and quantifying network dynamics as well as analytical
methods are discussed.

2.1 Network model

2.1.1 The leaky integrate and fire (LIF) model

The integrate and fire model has since its introduction in 1907 by Lapicque become the
most used canonical model for the description of spiking neurons. Its benefit compared
to other models like the Hodgkin Huxley model [47] lies in its simplicity, which makes
it analytically tractable, but it is at the same time sufficiently complex to reproduce
many of the essential features of real neurons observed in vitro and in vivo [42]. There
are some variations to the original approach, such as the leaky integrate and fire model
(LIF), or the exponential integrate and fire model (EIF) [42]. In this work, we consider
the LIF. The LIF model approximates the conductances of all ion channels in the
neuron by one resistor, which accounts for the leakage through these ion channels.
The resistance is not variable but constant, since the variability of the ion channels
resistance is only important in the regime where the action potential is generated.
Action potentials however last less than one millisecond and their exact form is believed
to not carry any valuable information in terms of neuronal computation. The action
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potential is therefore not modeled but only the PSC at the postsynaptic neuron in
response to a presynaptic neuron crossing uth. The PSC that is generated by an action
potential at the postsynaptic site of a connection is described by a different model (see
section 2.1.2).

model

The idea behind the LIF model is, to model the real neuron by a resistor-capacitor
(RC) circuit. The membrane is apart from its ion channels a very good insulator that
separates the extracellular and intracellular space.Since the inside of the cell inabits
different concentrations of ions than the outside, the membrane can be described
by a capacitance Cm in parallel with a resistor Rm that accounts for the leakage of
ions through the several ion channels (Fig. 2.1). The consistent transport of ions
through active ion channels however always keeps the membrane potential at some
minimum value urest. This can simply be modeled by a battery in series to the leakage
resistance. Deviations from this resting potential are induced by synaptic or other
external currents that are fed into the neuron or, in the model case, the RC-circuit.
Due to the leakage term, these deviations decay with a characteristic time constant
τm = Rm Cm back to the resting potential urest if the stimulus stops. If the input
current is strong enough to drive the membrane potential over the spiking threshold
uth, an output signal is generated and the membrane is set to a reset potential ureset

for a time interval of 3ms. During this time, the ion channels that usually respond to
incoming signals are deactivated, i.e. the neuron does not respond to any incoming
currents. This is modeled by a simple switch that cuts of the capacitance from the rest
of the circuit and instead connects it to a battery with voltage ureset.

Table 2.2 gives some common parameter values for the LIF model that are a good
fit to biological pyramidal neurons. The equation describing the time evolution of the
membrane potential in the LIF model is (Fig. 2.1):

τm
dui(t)

dt
= urest − ui(t) + Rm Ii(t) (2.1)

Here Ii(t) describes the current input from other neurons as well as sensory input.
The spiking and subsequent reset of the membrane potential is not directly described
in the mathematical formulation and needs to be implemented in addition to solving
the differential equation then doing simulations on the computer.
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Fig. 2.1: The circuit shown in panel a is a slightly improved version of the classical
model as it considers the resetting of the membrane potential. The idea behind the LIF
model is that the dynamics of the membrane potential can be described independent
of the different ion types and channels by reducing them to one parameter, the leakage
through the resistor Rm. The capacitance of the cell membrane is described by the capac-
itor Cm. The battery with the voltage urest accounts for the Nernst potential (or reversal
potential) at equilibrium, i.e. if no driving current I(t) is present. The Action potential
is not modeled by ion channels in form of variable resistors but is generated simply when
the voltage across the capacitor reaches a threshold value. At the same time a voltage
driven switch cuts of the circuit from the driving current and resets the voltage across the
membrane to ureset. This accounts for the refractory period after the emission of a spike.

2.1.2 Synaptic currents

We use a simple approximation to model the real process of synaptic transmission
(background section 1.1.2). Instead of modeling the PSC directly, the change in the
synaptic conductance is modeled. The resulting current flow is then determined by the
synaptic conductivity and the membrane potential u(t) ( which is assumed to be the
same at the synapse as at the soma of the corresponding postsynaptic neuron) and the
reversal potential Esyn. The maximum amplitude of the synaptic conductance g0 is
referred to as synaptic weight, strength or efficacy.
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The model

The transient conductance change is modeled by a simple jump and an exponential
decay:

gi,j(t) =

0 if t − tj < ∆τ ,

g0;i,j exp(−((t − tj) − ∆τ)/τs) if t − tj > ∆τ .
(2.2)

Where tj is the spike time of the presynaptic neuron and g0;i,j the peak conductance
of the synapse between presynaptic neuron j and postsynaptic neuron i. The peak
conductance is a measure for the synaptic strength (that is altered by synaptic plasticity,
see section 2.2.1). The jump occurs at the income of a synaptic spike, delayed by the
dendritic latency time constant ∆τ that accounts for the fluctuations observed between
the peak AP and the beginning of the PSP measured in rat pyramidal neurons [65].
The resulting synaptic current (PSC), the soma of the postsynaptic neuron receives,
depends on the difference between membrane potential and reversal potential Esyn,
where it is assumed that the membrane potential is constant along the synapse and
the soma:

Isyn;i,j = gi,j(t)(Esyn − ui(t)) (2.3)

Here Esyn is the reversal potential of the ion type at the synapse, which in the current
work is set to 0mV for excitatory synapses and −70mV for inhibitory synapses. Realistic
excitatory postsynaptic potentials (EPSPs) lie in the range of 0−10mV [100, 59, 62, 92].
This corresponds to PSC amplitudes around 0 − 1.45nA and conductances g0;i,j in the
range of 0 nS − 26.5nS. Note however, that these values for the synaptic conductivity
are based on the parameter we chose in the current work and depend explicitly on
what value the reversal potential Esyn takes!

The value of Esyn is the only factor in the model that distinguishes postsynaptic
excitation from inhibition [83]. Although mathematically it could simply be incor-
porated in the sign and magnitude of g0;i,j. However negative conductivity lags a
proper physical interpretation. If Esyn is smaller than the spiking threshold uth, the
postsynaptic potential (PSP) generated by the synapse will be negative and therefore
inhibitory (IPSP) as it lowers the probability of the postsynaptic neuron to exhibit
a spike. For Esyn higher than the spiking threshold uth the synapse will generate an
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excitatory PSP (EPSP). If |(µi − Esyn)| is small, where µ is the mean or effective
membrane potential, fluctuations in the membrane potential due to input from other
synapses have a large impact on the form of the PSP. For excitatory synapses with
glutamate receptors that activate Na+ and K+ ion flow, the reversal potential is ap-
proximately 0 mV . With the mean effective membrane potential being about −55 mV ,
fluctuations in the membrane potential that lie in the range of σ = 1 − 6 mV will
have a relatively small impact on the PSP. inhibitory synapses with GABA receptors
usually activate Cl− current flow across the membrane. In this case the reversal poten-
tial is about −70mV , here the impact of fluctuations is slightly higher [83]. In the
following course of this work we will only consider such cases in which |(µi−Esyn)| >> σ.

The diffusion approximation

As each neuron receives thousands of presynaptic input spikes it would be very difficult
to simulate such a system with the method described above. However, if it is assumed
that each postsynaptic current is small and the number of events is large, the fluctuations
of the membrane potential can be described as a Gaussian random process. This is
called the diffusion approximation [103]. In detail, the total synaptic input current at
a given time point t can be written as:

Iex,in
tot;i (t) = (ui(t) − Eex

syn)
Nex∑

j

gex
i,j(t) + (ui(t) − Ein

syn)
Nin∑

k

gin
i,k(t) (2.4)

This total current can now be decomposed into a voltage dependent and a voltage
independent part. The voltage independent part can be described by a constant current
I0;i that originates from averaging over all excitatory and inhibitory conductances
gex,in = (∑Nex

j gex
i,j(t) + ∑Nin

k gin
i,k(t))/(Nex + Nin) and a fluctuating part that can be

described by the standard deviation of the synaptic background current σ and a
Gaussian stochastic process η(t) of zero mean and unit standard deviation. For more
details see [88]. The voltage dependent part is given by gex,in ui(t) and has no
fluctuating part within the diffusion approximation. It can however be included in the
model by simply setting Rm to a lower value [78]. The approximation of the input a
neuron in a large network receives can therefore be formulated as:

Ii(t) = I0;i + INoise;i(t) , (2.5)
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Table 2.1: Typically measured values for layer 5 neocortical pyramidal neurons. The
values are taken from [78] and [7], where the value for Rm has been reduced by a factor
of 2-3 compared to the in vitro values to account for the increased synaptic background
input in vivo.

uth ureset urest Rm Cm τm Isyn Eex
syn Ein

syn σ

-50 mV -60 mV -70 mV 40 MΩ 250 pF 10 ms 10-300 pA 0 mV -70 mV 1-6 mV

with

INoise;i(t) = σi√
τ

η(t) (2.6)

If apart from this background input, the neuron receives any additional input such
as specific sensory stimuli Isens;i(t) or synaptic input Isyn;i(t) from other neurons that
are explicitly modeled, the total input current reads

Ii(t) = I0;i + INoise;i(t) + Isyn;i(t) + Isens;i(t) (2.7)

2.1.3 Dendritic Spikes

As has been discussed in the background section, dendrites not only sum up and filter
the input to the postsynaptic neuron, but also evoke strong and fast spikes. These
spikes are found to be triggered by strong synchronous inputs. Jahnke, Timme and
Memmesheimer introduced a model that fits the experimentally observed form of a
dendritic spike in [49]. The dendritic spike current is described by a sum of exponential
functions:

Idendr = θ(t − τdendr)
[

− A exp(− t − τdendr

τds,1
) + B exp(− t − τdendr

τds,2
) − C exp(− t − τdendr

τds,3
)
]

(2.8)

With A = 55nA, B = 64nA and C = 9nA. The dendritic time constants are
τds,1 = 0.2ms, τds,2 = 0.3ms, τds,3 = 0.7ms. and the dendritic delay τDendr = 3ms

(These parameter values are oriented on the values from the original paper by Jahnke
et al. [49]).
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Fig. 2.2: Panel a shows the transient of a dendritic spike which evokes a fast and strong
depolarization response in the membrane potential (Fig. b). The PSCs evoked by by
incoming spikes Ii(t) are shown in panel c (excitatory currents are shown in green and
inhibitory currents in red). The PSCs are modeled via synaptic conductance changes. If
the sum of these conductance changes over a time period of ∆τ = 2ms (d) crosses the
dendritic spiking threshold Θ, dendritic spikes are generated (e).

The dendritic spikes are evoked if the sum over the total synaptic conductivity
transient in a time window ∆t = 2ms crosses a threshold Θ. While somatic spikes
alter the conductivity and thereby determine the PSC amplitude, the dendritic current
is approximated to be of constant shape and not dependent on ui(t).

2.1.4 Network-topology

The goal of the current work is to investigate the dynamics of a network that has
properties of those found in the hippocampus. Since it is not known how exactly the
hippocampus is wired, some approximations based on current knowledge about the
hippocampus have to be made.

connectivity experimental: Most biological neural networks are sparse with a
connectivity of roughly 10 %. However this number is an estimate based on EPSP
recordings and it is unclear how many connections are not detected because they are
too weak [9]. Recent findings also show that the connection probability in some brain
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areas depends on different properties such as inter-somatic distance [81],[34].

weights experimental: Measurements of EPSP amplitudes in slices of hippocam-
pal CA1 and CA3 neurons are available [90], from which the weight disribution can
be estimated. It is found that the hippocampal weight distribution for excitatory
connections peaks around 0.1mV (Fig. 2.3, b).

connectivity model: The current work will not focus on the details of neuronal
connectivity and initiate connections randomly. Non random features will, for reasons
of simplicity and scope of this work, be ignored. The network used in this work
is constructed of Nex excitatory and Nin inhibitory neurons., with a ratio of 4 : 1.
This ratio is often used in theoretical frameworks and found to be a good balance
between excitation and inhibition, where the firing statistics match those observed
experimentally (firing is irregular and asynchronous) [8],[16]. The initial connectivity
is drawn randomly with connection probabilities pex,ex = 0.1, pex,in = 0.1, pin,ex = 0.1,
pin,in = 0.02 that account for the observation that connectivity is sparse (≈ 10%).

synaptic weight-distribution model: Based on known weight distributions,
the connection strengths are drawn from a Gaussian distribution, truncated at 0 to
ensure only positive connection strengths. Mean and standard deviation are cho-
sen to approximately fit experimental observations [90] with µex,ex = 0.35nS and
σex,ex = 0.08nS (see fig. 2.3). The weights for the other connection types are also
drawn from Gaussian distributions, where the values for mean and STD are oriented
on [49], with µex,in = 1.2nS and σex,in = 0.12nS, µin,ex = 0.5nS and σin,ex = 0.05nS,
µin,in = 1nS and σex,ex = 0.1nS. Note again that the estimation of these conduc-
tivities is based on the reversal potential we chose in the current work (see equation 2.3).

Axonal and dendritic delays

Signal transmission in the brain does not happen instantaneously but is delayed by the
time a signal needs to travel through the axon and the dendrites. The time, the signal
travels from the synapse, along the dendrite to the soma, has an direct impact on
STDP, since a large dendritic delay time means that the back propagating signal from
the soma that tells the synapse that a postsynaptic spike occurred is delayed. The
axonal delay might underly large fluctuations from neuron pair to neuron pair, since
neuron pairs can be spatially spread. Dendrites are however a rather local structure,
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Fig. 2.3: Weight distribution in terms of the EPSP amplitudes. Panel a shows the weight
distribution drawn from a Gaussian distribution that is truncated at 0 (see text). Panel
b shows the weight distribution determined from experimental data of hippocampal CA1-
CA3 excitatory neuron connections. Panel b is taken from [9], where Barbour et al. esti-
mated the weight distribution with data from [90]
.

therefore fluctuations are comparably small.In the current work it is assume that the
dendritic delay is constant for all synaptic connection. Further we assume that the
here studied neuron ensemble is spatially close, such that differences in axonal delays
between the neurons are small. We therefore ignore axonal delays. The value of the
dendritic delay is set to equal the time interval, at which the LTP-domain of the STDP
rule has its maximum (see section 2.2.1). We motivate this choice by the argument
that a strong PSC that evokes a direct postsynaptic spike response should result in
maximal potentiation.
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Fig. 2.4: Conduction delay has to be differentiated into axonal delay τaxon and dendritic
delay τdendr.. Axonal delay describes the time, an action potential travels from the presy-
naptic neuron to the synapse that connects it to a postsynaptic neuron. The dendritic
delay accounts for the time, the synaptic current signal travels from the synapse to the
soma of the postsynaptic neuron

2.2 Synaptic plasticity

2.2.1 Spike time depended plasticity and synaptic scaling

In this section the form of the function describing the STDP learning window as well
as a mechanism for homeostatic scaling are presented.

Different forms of STDP rules have been observed [52]. It is therefore important to
first specify which properties of STDP to include in the model and to make clear that
synaptic plasticity can be much more diverse. STDP rules have been fitted to several
experimental data, most commonly [64] and [85]. Experimental data is usually fitted
by two exponential functions [85], [55]. Here the results from [55] are taken as the
basis for the analysis and model.

∆g0 = W (∆t) = η


e− ∆t

τs

[
A+

(
1 + ∆t

τ+,1

)
+ A−

(
1 + ∆t

τ−,1

)]
if ∆t ≥ 0

A+ e
∆t

τ+,0 + A− e
∆t

τ−,0 if ∆t < 0 ,

(2.9)

with

τ+,1 = τs
τ+,0

τs + τ+,0

τ−,1 = τs
τ−,0

τs + τ−,0
.

(2.10)

η is the so called STDP learning rate, which defines how fast (by what amount per
spike pair) the synapse is changed. Values for the several parameter are given in table
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Fig. 2.5: STDP learning window taken from [55] that has been fitted to experimental
data. The learning window is described by two regions. For negative spike timing differ-
ences between pre- and postsynaptic neuron (i.e. postsynaptic firing occurs before the
presynaptic firing), STDP is characterized by a negative synaptic change, also referred
to as long term depression (LTD). For positive spike timing difference, synaptic connec-
tion are strengthened, referred to as Long term potentiation (LTP). The exact form of
the STDP window varies depending on neuron type, brain region and stimulus.Therefore
we here shown STDP rule, although fitted to experimental data (for τs = 5ms ), is only
a rough approximation. An important property of STDP is however, whether it is LTD-
dominated, balanced or LTP-dominated. These three cases can be established with the
original fit as a basis by altering τs. τs = 3ms corresponds to LTD-dominated, τs = 4ms to
balanced and τs = 5ms to LTP-dominated.

2.2. The values of the exponential decay constants determine weather LTP dominates
over LTD or vice versa. In the current work we change the dominance of STDP by
changing the size of the LTP domain via τs. τs = 3 generates a LTD-dominated, τs = 5
a LTP dominated STDP rule (Fig. 2.5).

Table 2.2

η τs τ+,0 τ−,0 A+ A−

12 pS 3,4,5 ms 1 ms 20 ms 1 -1

While this form of STDP learning rule is most established, STDP rules can also
have very different shapes depending on the brain region, firing rate, bursting and
synaptic strength [19], e.g. where LTP only depends on the absolute value of of the
time difference but not on its sign as described above [19], [1]. However the analysis
of all these different types is not the focus and would go beyond the scope of this work.
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Synaptic scaling

Hebbian plasticity needs to be regulated, since the positive feedback, that originates
from the fact that synapses that got potentiated, increase the probability that a
presynaptic evokes a postsynaptic spike, which leads to even more potentiation. Weight
independent STDP, also referred to as additive STDP, leads to unrealistic weight
distributions, where synapses grow unbounded or shrink down to zero. One way
to stabilize synaptic growth is via weight dependent STDP (multiplicative STDP),
where strong synapses grow slower than weak synapses. This leads to stable hebbian
learning [108]. Another proposed regulatory mechanism is Synaptic Scaling (SS),
which globally adjusts all synapses onto a postsynaptic neuron depending on the
postsynaptic firing rate. As for STDP, this mechanism can be either weight dependent
(multiplicative) or weight independent (subtractive). Both cases introduce further
competition between synapses, since all connections get scaled down if some subset
triggers a high postsynaptic activity. Therefore only those connections which are highly
correlated with the postsynaptic neuron are likely to survive due to STDP induced LTP.
Such a mechanism that globally alters synaptic strength based on neuronal activity
has been observed in cultured networks, where inhibition of activity let to synaptic
strengthening and increasing the activity let to downscaling [105], [60] (hippocampus),
[72].

Synaptic scaling can be described by a mechanism similar to Oja’s rule who
introduced a regulating term to hebbian learning that depends on the square of the
output response of a neuron and the synaptic weight [73].

A slightly altered function for the synaptic scaling mechanism has been introduced
in [97], where it has been shown that a convex non-linear weight dependence generically
stabilizes excitatory and inhibitory synapses, whereas linear weight dependence only
stabilizes under certain conditions. In the current work the following rule will therefore
be used as a basis:

dg0;i,j

dt
= ηSS

(
g0;i,j

g∗

)λ

[rT − ri(t)] , (2.11)

where ηSS is the SS learning rate of the synaptic scaling mechanism that defines
the timescale on which the mechanism acts and g∗ a normalization factor in nS. rT is
the target firing rate. In the current work we study SS for λ = 1, which will be referred
to as the linear SS rule and λ = 2, referred to as the convex SS. rT is set to 0. ηSS is
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adjusted depending on the STDP parameter τs, i.e. depending on whether STDP is
LTD-dominated, balanced or LTP-dominated.

Estimating the instantaneous firing rate

Because in the current work, a spiking neural network model is used, the firing rate
r(t) needs to be estimated from the spike train a neuron exhibits. Alternatively, the
synaptic scaling rule 2.11 could be implemented in such a model by reformulating it to
an event driven rule, where scaling is introduced each time the postsynaptic neuron
spikes. Here we use the first approach. The instantaneous firing rate is in practice often
estimated by binning a recorded spike train. A biological neuron however probably
has no mechanism that determines the firing rate of the neuron by binning its past
spikes. Rather the firing rate of a neuron is saved in some concentration transient.
The instantaneous firing rate is indeed well approximated by a function describing an
instantaneous jump with a subsequent exponential decay. Biologically this could be
interpreted as a model for the calcium concentration in the soma which would reflect
the neurons activity. The time constant with which the concentration decays can be
interpreted as the size of the binning window. Figure 2.6 show a comparison between
the estimated spontaneous firing rate using the binning method and the exponential
function method, which is described by eq. 2.12, which is in analogy to the model for
calcium-based plasticity in [44]:

dc

dt
= − c

τc

+ Cpost

∑
i

δ(t − ti) . (2.12)

Here τc is the decay time constant, and Cpost the postsynaptic spike evoked jump
in calcium concentration.

2.2.2 Spike based hebbian learning

In this section a mathematical formulation of correlation-based hebbian learning for
spiking neurons is sketched based on [41]. A neuron receives input from N >> 1
synapses with different peak conductances g0;i,j for 1 ≤ i, j ≤ N and i ̸= j. Changes in
the peak conductance are introduced in three possible ways [55]:

1. The nth incoming spike at time tn
j changes g0;i,j by an amount ωin independent

of the spike timing of the postsynaptic neuron i,
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Fig. 2.6: The instantaneous firing rate of a neuron is well captured by a jump at the time
of spike initiation and a subsequent exponential decay with right chosen amplitude and
decay time constant.

2. the mth output spike at time tm
i changes g0;i,j by an amount ωout independent of

the spike timing of the presynaptic neuron j,

3. the time difference between incoming and outgoing spike ∆t = tn
i − tm

j changes
g0;i,j by W (∆t) .

Here W (∆t) again defines the STDP learning window, which describes the depen-
dency of the change in synaptic strength on the pre-/post- spike timing difference.
Cases 1. and 2. describe mechanisms that do not depend on spike time correlations.
They can either act global, if ωin and ωout are independent of g0;i,j , or local in the case
of such a dependence. For ωout < 0, case 2. can be interpreted as a mechanism for
homeostatic downscaling.

The three mechanisms shall now be described in a more mathematical way, which
closely follows [55]. A neuron i exhibits a spike train that can be formulated as follows:

Si(t) =
∑

spike

δ(t − tspike
i ) . (2.13)

Using this description of a spike train, the three types of synaptic change due to
spiking of the pres-synaptic neuron j and postsynaptic neuron i can be formulated in
one equation:

∆g0;i,j(t) =
[

ωin Sj(t)︸ ︷︷ ︸
case1

+ ωout Si(t)︸ ︷︷ ︸
case2

]
+

∫ ∞

−∞
dt′ W (t − t′)Sj(t)Si(t′)︸ ︷︷ ︸

case3

. (2.14)
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Equation 2.14 correlates presynaptic and postsynaptic spike trains.

The analysis of equation 2.14 is in general rather complicated, because neurons
exhibit spikes in a complex, stochastic manner. Therefore the change in synaptic
conductance ∆g0;i,j(t) is also a stochastic variable. An analytically more tractable
formulation can however be found by focusing on the mean of ∆g0;i,j , which can be
found by calculating the ensemble average of the process described by eq. 2.14. Taking
the ensemble average of eq. 2.14, denoted by ⟨.⟩, and substituting s = t − t′, one
obtains [55]:

⟨∆g0;i,j⟩(t) =
[
ωin ⟨Sj⟩(t) + ωout ⟨Si⟩(t)

]
+

∫ ∞

−∞
ds W (s)⟨Sj(t + s)Si(t)⟩ , (2.15)

where ⟨S⟩(t) is called the instantaneous firing rate.

rj(t) = ⟨Sj(t)⟩ , ri(t) = ⟨Si(t)⟩ . (2.16)

The cross correlation function is defined by:

Ccross;i,j(s; t) = ⟨Sj(t + s)Si(t)⟩ . (2.17)

Then, the ensemble averaged learning equation reads

⟨∆g0;i,j⟩(t) = ωin rj(t) + ωout ri(t) +
∫ ∞

−∞
ds W (s)Ccross;i,j(s; t) , (2.18)

Thereby, the average change in synaptic conductivity at a given point in time t can
be calculated from the crosscorrelation function between the post- and presynaptic
spike trains. This is a useful feature for the analysis of plastic networks with STDP
since the crosscorrelation function can be easily estimated from long enough spike train
data. Under some conditions also an analytical expression in linear approximation is
known to the crosscorrelation function between pairs of LIF neurons.
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2.3 Spatial learning
Some background on the theory of hippocampal learning and place cells has been
given in the background section 1.4. Here a model for place cell learning introduced by
[49] that sets the bases for memory representations in the current work will briefly be
discussed. Each place encoding neuron i is assigned a place field Pi that is centered at
xctr

i , which corresponds to a point in the space that our agent "explores". The width
of this place field is described by ∆wi. The place field is randomly assigned to each
encoding neuron by

Pi = [xctr;i − ∆wi

2 , xctr;i + ∆wi

2 ] . (2.19)

If during exploration the current position of our agent (e.g. a rat) is within the
place field of some place cell i, the associated neuron receives a current pulse of width
∆TP F and Amplitude IP F . The amplitude of the current pulse depends on the distance
of the current position to the center of the neurons place field

IP F (x̃i) = Imax(−(2 x̃i(t) − 1)2 + 1) , (2.20)

where Imax is the maximum possible amplitude of the current pulse and

x̃i(t) =
x(t) − (xctr;i − ∆wi

2 )
∆wi

. (2.21)

Here x(t) is the position of the agent. The current pulses occur in time intervals
that are time locked to a virtual theta oscillation with a frequency of 8 Hz. The theta
oscillation starts at the beginning of a simulation and is not altered within, i.e. the
current pulses occur in given time intervals, however slightly shifted depending on the
position of the agent relative to the individual place cell center. This is motivated by
the experimental finding that the timing of spikes during spatial learning depends on
the position relative to the place-field center and on the phase of background theta
oscillations [75]. The phase shift ∆Tshift is given by:

∆Tshift(x̃i) = 0.9(1 − x̃2
i ) ∗ T , (2.22)
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Fig. 2.7: The network is send down a linear track, here depicted by a mouse (left side).
When the animal enters the place field of a neuron, the corresponding neuron gets an
input pulse whose amplitude and timing depends on the distance to the place field center
(eq. 2.20, 2.21, 2.22). The current pulse amplitude as a function of the relative position of
the animal to the neurons place field center is sketched in the middle, bottom. Neurons
with adjacent place fields that are connected via synapses alter their connectivity based on
the different timing due to the phase shift in the current pulses they receive (right).

where T is the time of one oscillation period, i.e. 0.125 s. When the agent is send
down a linear track, the phase shift between stimuli that is induced by 2.22 results in
the development of a FeedForward- (FF) structure between neurons with place fields
(Fig. 2.8, a). Synaptic connections between neurons become potentiated if the agent
reaches the location of the presynaptic before the postsynaptic placefield. Therefore,
because of the time shift ∆Tshift(x̃i), the postsynaptic neuron will fire subsequent to
the presynaptic neuron, which potentiates their connection due to STDP.

While this learning procedure from [49] produces memory representations of spatial
tracks in a biologically motivated way that is in agreement with some experimental
observations, the resulting FF -structure, whose width and height depends mainly on
the parameter ∆wi, is predictable and can without strong assumptions be fitted by a
function of exponentials. To reduce complexity and time consumption, the network
topology will for further simulations be created by the function:

gij =


g1

(
e

−
∆xij

τA − e
−

∆xij
τB

)
if ∆xij > 0

g2

(
e

−
∆xij

τC − e
−

∆xij
τD

)
if ∆xij < 0 ,

(2.23)
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Fig. 2.8: A neural place cell model, with theta-oscillation time locked sensory stimuli
pulses leads to FF-structures during training along a linear track. Panel a shows the evolu-
tion of the feed-forward structure after different simulation cycles, where in each cycle the
system is ones send down the linear track. The neural response to sensory stimulus in the
form of theta locked current pulses is shown in figure b. Instead of training the network
to achieve a FF-structure as in a, equation 2.23 is used to achieve a equivalent network
topology (c).

which qualitatively captures the result from the training procedure but is less
time consuming. Here g1 describes the amplitude of the FF-connections and g2 the
amplitude of the backwards connections which are depressed slightly due to the learning
procedure.

2.4 Measures for the classification of neural net-
work dynamics

2.4.1 Estimating the crosscorrelation function from spike data

As has already been pointed out in the course of this section, the crosscorrelation
between post- and presynaptic spike trains plays an important role in STDP and
therefore for its closer study. With long enough measurements of spike trains the
crosscorrelation function can easily be estimated. Analytical expressions are however
hard to derive, as will be shown in the last section.

The cross correlation for positive and negative times can be estimated from the
simulated spike trains in terms of the firing rate at time ∆t before and after a presynaptic
spike:

CCross(t) = 1
∆t

∫ tpre+t+∆t

tpre+t

∑
j

∑
f δ(t − tf

j )dt

N
= Prob[Neuron to spike n times in ∆t](t)

∆t
, (2.24)
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where tpre is the time of the presynaptic spike arriving at the synapse. When
calculating the crosscorrelation function in terms of the factor by which the rate
changes relative to the mean firing rate r0 (and thereby the probability to fire), the
following relationship holds:

C∗
Cross(t) = CCross(t)

r0
− 1 . (2.25)

The key benefits of evaluating the crosscorrelation function from simulated data
are that the analysis of the crosscorrelation itself leads to a better understanding of the
synaptic dynamics. Moreover, ones the crosscorrelation function is known, different
correlation based plasticity mechanisms can be analyzed via integration without the
need of any further simulation (eq. 2.18).

2.4.2 Quality of replay

The quality of a replay event is quantified by measuring the sequence of spiking for
neighboring neurons within the ff-structure. If in a neuron pair the post synaptic
neuron fires within a time window of ∆T = 20ms after the presynaptic neuron, the
order of spiking is in agreement with the local connectivity. If the postsynaptic spike
occurs before the postsynaptic spike, the order is opposite to the local connectivity.
The replay quality is measured using the matching index M , which has also been used
to quantify the quality of replay in [50] and [49].

M = ntrue − nfalse

ntrue + nfalse

, (2.26)

where ntrue is the number of spike pairs that occurred in the correct order and
nfalse the number of spike pairs that occurred in the wrong order. Therefore, if there
is no preferred direction of spiking, ntrue = nfalse and the matching index goes to zero,
while for growing ntrue and shrinking nfalse, M converges to 1 (or -1 for the opposite
case). The matching index is a measure similar to the crosscorrelation as it detects
the order of spiking in a similar way. The difference is that crosscorrelation does this
in theory in continuous time (not in practice, where simulations are done in discrete
time steps, and cross correlation is estimated via small bins), while the matching
index counts the occurrence of spikes within in a large binning window (∆T = 20ms)
where the information of the exact timing is lost. Further the matching index gives
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the normalized fraction between the number of events that occurred after and before
a presynaptic spike, therefore the total number of events is lost too. However, the
matching index requires far less data and is therefore a good indicator for how activity
distributes in a network when simulating large networks which is time consuming. Note
that crosscorrelation and matching index M are both a measure of correlation, not
causality!

2.5 Analytical expression for the crosscorrelation
of a weakly coupled LIF pair

To be able to analytically study the dynamics of the plastic neural network using the
learning equation 2.18, an expression for the cross correlation function between spiking
neurons (here LIF model neurons) is needed. This is a very difficult task, as the change
in probability of emitting a spike has to be calculated depending on the input current
received by a presynaptic neuron in the presence of stochastic noise that mimics the
input from the thousands of other connected neurons. The approach proposed by S.
Ostojic and N. Brunel [78, 18], which gives the crosscorrelation in linear approximation,
will be sketched below. Notice however, that this approach is only able to describe the
crosscorrelation between neuron pairs. Further, the linear approximation only holds
for small PSC amplitudes, strong connections are not accurately described.

Given a single neuron pair of LIF neurons that is unidirectionally connected and
only receive a constant current and Gaussian white noise (diffusion approximation),
the dynamics of the presynaptic membrane potential is given by

τm
dupre

dt
= urest − upre + Rm I0;pre + σpre√

τm

ηpre , (2.27)

where I0;pre is the constant background current and σpre√
τm

ηpre describes the white
noise (see section 2.1.3 , diffusion approximation). The membrane potential of the post-
synaptic neuron further receives spiking input from the presynaptic neuron. Therefore
the dynamics of the postsynaptic membrane potential are described by

τm
dupost

dt
= urest − upost + Rm I0;post + σpost√

τm

ηpost − Rm g(t)[upost − Esyn] , (2.28)
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where the postsynaptic conductance change gtot(t) imposed by the presynaptic
spike-train Spre(t) (see section 2.1) is given by:

gtot(t) =
∫ ∞

0
dτg(τ) Spre(t − τ) . (2.29)

Here, we have written g instead of gpost,pre for better readability. Note however
that g is specific for the individual pre- postsynaptic connection. The formulation
chosen in 2.28, splits the state equation up into an unperturbed part (leak term, base
current+noise) and a perturbation, caused by the presynaptic neuron.

We now may ask, how does the probability that the postsynaptic neuron fires
change due to the arrival of a presynaptic spike? This question can be reformulated
by asking, how does the instantaneous firing rate of the postsynaptic neuron change
after the arrival of a presynaptic spike, which has basically the same meaning as the
first formulation. One finds that this question is actually not that easy to answer,
because we deal with a system, where the response (in terms of the firing rate) of a
LIF neuron to an input current is nonlinear. However, a linear approximation to the
rate response is in good agreement with the actual response in a certain regime of the
input current amplitude. Fourcaud-Trocme et al. [38] showed that, in the limit where
gtot(t)[upost − Esyn] is small, the instantaneous firing rate can be approximated by a
linear relationship:

rpost(t) = r0;post +
∫ ∞

0
dτRI(τ)gtot(t − τ)[µ − Esyn] , (2.30)

where RI(τ) is some linear filter that is called the rate response function to an
arbitrary input current. r0;post is the firing rate for a constant driving-current I0 with
Gaussian white noise (diffusion approximation). With equation 2.30 we now have a
starting point for deriving an expression of the crosscorrelation function. In section ??,
the definition of the crosscorrelation function has been given as the ensemble average of
the product of the pre- and postsynaptic spiketrains Spre, Spost (Eq. 2.17) (the indices’s
pre, post in Ccross are left out for readability):

Ccross(s; t) = ⟨Spre(t)Spost(t + s)⟩ . (2.31)
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Further, the instantaneous firing rate is defined by ri(t) = ⟨Si⟩ and for a constant
input current we write r0;i(t) = ⟨S0;i⟩. Therefore, we may rewrite equation 2.30 as

rpost(t) = ⟨Spost(t)⟩ = ⟨S0;post⟩ +
∫ ∞

0
dτRI;post(τ)gtot(t − τ)[µ − Esyn] . (2.32)

With the presynaptic spiketrain Spre
1 and combining equations 2.31, 2.32 , we

derive at an expression for the crosscorrelation function in terms of the rate response
function RI;post(τ)

Ccross(s; t) = ⟨S0;pre S0;post⟩ +
∫ ∞

0
dτRI;post(τ)(µ − Esyn)⟨Spre(t + s) gtot(t − τ)⟩

(2.33)

and expressing gtot(t − τ) with equation 2.29

= ⟨S0;pre S0;post⟩+
∫ ∞

0

∫ ∞

0
dτdτ ′RI;post(τ)g(τ ′)[µ−Esyn] ⟨Spre(t+s)Spre(t−τ ′ −τ)⟩ .

(2.34)

When taking the Fourier transform with respect to t and t+s, the convolution
integral in 2.33 turns into products. The ensemble average over the product of the
Fourier-transformed presynaptic spike train ⟨Spre(ω)Spre(ω′)⟩ is the power spectrum of
the presynaptic neuron Apre(ω). Then the crosscorrelation function reads [78]

C∗
Cross(ω) = r0;pre

r0;post

RI;post(ω)g(ω)[µ − Esyn]Apre(ω) , (2.35)

where the crosscorrelation is given in terms of the factor by which the rate changes
relative to the mean firing rate r0 (see section 2.4.1). We derive the crosscorrelation in
terms of the change in the firing rate in the time domain via back-transformation and
subsequent multiplication and addition of r0;post.

CCross(t) = FT −1(C∗
Cross(ω)) r0;post + r0;post (2.36)

1We now assume that the input to the presynaptic neuron can be described in the diffusion
approximation
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To be able to calculate a solution for equation 2.35 we need an expression for r0,pre

(or r0,post), Apre(ω) and RI,post(ω).

To calculate the rate response function and the firing rate r0 to a constant input
current I0, we need to solve the Fokker-Planck equation for the probability distribution
of the LIF membrane potential. In detail, we need to know the probability that the
membrane potential u crosses the spiking threshold uth ∆t second after the last reset,
given some input current I(t).

Expression for r0

Let P (u, t) be the probability distribution to find the membrane depolarization potential
at u at time t . The time evolution of the probability distribution can be described by
the Fokker-Planck equation (see e.g. [18]):

τm
∂P (u, t)

∂t
= σ2(t)

2
∂2P (u, t)

∂u2 + ∂

∂u

[
(u − µ(t))P (u, t)

]
, (2.37)

where µ(t) is the effective mean membrane potential. The first term on the r.h.s.
describes the fluctuations of size σ and the second the drift due to the stochastic
synaptic input. The probability flux J(u) through u is then given by [37]:

J(u) = −u − µ

τm

P (u, t) + σ2

2τm

dP (u, t)
du

(2.38)

The probability flow through the threshold uth gives the firing rate at time t J(uth, t) =
r(t). As the membrane potential is reset after a spike, an absorbing boundary has to
be introduced, setting P (uth, t) = 0. The probability current through the boundary
therefore gives the probability of emitting a spike [18]:

∂P (uth, t)
∂u(t) = −2r(t)τm

σ(t)2 , (2.39)
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Further, due to the resetting, the probability current flow through ureset from below
is given by the current flow from above minus the current flow through uth:

∂P (ureset− , t)
∂u(t) = ∂P (ureset+ , t)

∂u(t) − ∂P (uth, t)
∂u(t) = ∂P (ureset+ , t)

∂u(t) + −2r(t)τm

σ(t)2 . (2.40)

Additional conditions are limu→−∞ = 0 and
∫ uth

−∞ P (u, t)du = 1. With these
conditions, solutions for P (u) can be derived for the stationary state, i.e. when
the neuron only receives a constant stimulus and white noise (µ(t) = µ0, σ(t) = σ0 and
P (u, t) = P0(u)). The solutions for P0(u) can be given in integral form, from which
the stationary firing rate r0 is be determined (Eq. 2.39) [18]

r0 =
τ

∫ ∞

0
du e−u2

e2ythu − e2yresetu

u

−1

, (2.41)

where yth = uth−µ0
σ0

and yreset = ureset−µ0
σ0

.

Rate-response function

Brunel et al. derived a solution for RI(ω) in linear approximation in [17].

RI(ω) = r0;post

gmσ(1 + iωτm)

∂U
∂y

(yth, ω) − ∂U
∂y

(yrest, ω)
U(yth, ω) − U(yrest, ω) , (2.42)

with

yth = (uth − I0)
σ

, (2.43)

yrest = (urest − I0)
σ

. (2.44)
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U(y, ω) is given by the following differential equation (Kummer’s differential equa-
tion):

d2U

dy2 = 2y
dU

dy
+ 2iωτmU . (2.45)

For which the following analytical solution in terms of the special mathematical
function, the confluent hyper-geometric function is know [17]:

U(y, ω) = ey2

Γ((1 + iωτm)/2)M(1 − iωτm

2 ,
1
2 , −y2) + 2yey2

Γ((iωτm)/2)M(1 − iωτm

2 ,
3
2 , −y2) , (2.46)

where M(y, ω) is the confluent hyper-geometric function [4].

The response is given relative to the unperturbed stationary firing rate r0;post. Its
unit is therefore Hz

pA
and RI(ω)

rpost,0
would therefore give the fraction of change in rate per

pA of input. When the firing rate is interpreted as the probability of the neuron to
fire, RI(ω)

r0;post
basically describes the change in firing probability in response to an input.

Power spectrum of a LIF neuron

If the input signal is Poissonian, the power-spectrum of the incoming current would be
a constant. For the case of a presynaptic LIF neuron, driven by a constant current
I0 and Gaussian white noise, the power-spectrum is not a constant. An analytical
expression can be given in terms of the Fourier transform of the inter-spike interval
distribution PISI(ω) [41]. It is given by [78]:

A(ω) = (1 + 2Re(A+(ω)))
r0;pre

, (2.47)

where

A+(ω) = PISI(ω)
1 − PISI(ω) . (2.48)
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Fig. 2.9: The crosscorrelation between a neuron pair receiving white noise input, esti-
mated from spike train data compared to the analytical solution of the crosscorrelation
function in linear approximation. The red curve shows the inverse Fourier transform of
the solution to equation 2.35, which has been calculated using the fast Fourier algorithm.
The coupling between the pre- and postsynaptic neuron is weak with an PSC amplitude
of 35.7pA. In this regime the analytical solution is in good agreement with the estima-
tion from spike data. For PSC amplitudes above 100pA the linear approximation starts to
heavily underestimate the primary peak in the crosscorrelation at t = 0.

In the time domain, equation 2.47 describes the change in probability to observe a
spike t seconds after the last spike.

The Fourier Transform of the inter-spike interval distribution can be expressed
analytically for the LIF neuron model [103], [78]:

PISI(ω) = U(yrest, ω)
U(yth, ω) . (2.49)

We thereby have everything needed to calculate the crosscorrelation function from
equation 2.35. The linear response approximation of the crosscorrelation function is in
good agreement with results from simulations for the case of weak coupling (See fig.
2.9).

Calculating the transmission probability from the crosscorrelation function

The crosscorrelation functions can be interpreted as the probability of the postsynaptic
neurons to fire at time t before or after the arrival of a postsynaptic spike. Thereby we
can calculculate the probability Ptransm that a postsynaptic neuron fired in response
to a presynaptic spike from the crosscorrelation function. Note however that the term
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’response’ in this case is used to describe correlation, not causality2 Ptransm is calculated
by first multiplying the crosscorrelation function by the postsynaptic baseline firing rate,
which gives the ensemble averaged change in the instantaneous firing rate. Integrating
over the positive part of this function for positive times gives Ptransm:

Ptransm =
∫ ∞

0
dt C+

Cross(s; t) ∗ r0;post . (2.50)

2.6 Information on procedures
All simulations and calculations were done using python 3.5. Simulations have been
done with 0.1 ms precision and ran on a i5 7200 processor with a simulation- to
real-time ratio of ≈ 4 at a network size of 480 neurons. In the methods section all
parameter have been given as they were measured experimentally. However, we find it
more neatly to set the resting potential urest of the neuron to 0mV instead of −70mV .
Therefore in the results of this work the following parameter are set to different values:
urest = 0mV , ureset = 10mV , uth = 20mV , Eex

syn = 70mV , Ein
syn = 0mV . If in the

following sections, input currents (e.g. I0) are given in nAmV, the leakage resistance
Rm = 40MΩ has been absorbed into the current variable. Otherwise, currents are
given in A.

2One could argue whether response is therefore the correct term. However, from the ’perspective’
of the STDP mechanism, whether the postsynaptic neuron fired after the presynaptic spike due to
causality or just due to correlation does not make a difference.



Chapter 3

Results

3.1 Outline
The current work addresses the question whether spike-timing-dependent plasticity
(STDP) in combination with synaptic scaling (SS) can lead to distinct up and down-
scaling of synaptic connections in a network with dendritic amplification. We are
specifically interested in how a memory representation in form of a FeedForward-
structure (FF-structure) evolves under the influence of our plasticity model. We first
show that the network model produces replay activity in combination with ripples.
Next, the properties of the plasticity model for different widths of the STDP rule’s LTP
domain and different network parameter are examined for a single synaptic connection.
Then, the results from simulating a larger network with embedded FF-structure are
shown. The last part of the results section stands out from the rest of the work, where
we compare the properties of STDP in analytical calculation with simulation results.

3.1.1 Ripples and replay in a feedforward network

In their paper, Jahnke et al. [49] have shown that a network with strong FF-connectivity
(Fig. 3.1) and dendritic spiking, exhibits ripple like activity in combination with mem-
ory replay. Their network model sets the basis in which our plasticity model will be
tested. In contrast to Jahnke et al., in the current work, the network does not receive
any directed stimuli but is solely driven by a constant background current I0 and
Gaussian white noise with SD σ. Nevertheless, we find that pronounced ripples and
and replay events are generated (Fig. 3.2, a,b). The replay is expressed by an upwards
spread of activity, going from the neurons at the beginning of the FF-structure to its
end. Further, we find that the mean activity of the individual neuron increases with its
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position down the FF-structure (with rising neuron index in Fig. 3.2, a). The replay
is, on a smaller timescale, divided into sharp cluster (ripples) of synchronously active
neurons (Fig. 3.2, b). The single ripples are separated by a time-interval of ≈ 10ms ,
i.e. they occur at a rate of ≈ 100Hz, which is of the same order they are observed in
experiments [69]. The time interval is approximately of the order of the PSC delay
(here 3ms) plus the dendritic spike delay (τdendr = 3ms). The missing time interval can
be explained by the rising time of the EPSP that it takes until the spiking threshold is
reached.
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Fig. 3.1: Weight matrices for excitatory connections (a) and inhibitory connections (b).
Memories are represented in the network via a FF-structure, which results in stronger con-
nections in the lower diagonal of the excitatory weight matrix. Excitatory-excitatory con-
nections are presented by the upper left submatrix gex

0 [0, 400; 0, 400]. Excitatory connec-
tions to the inhibitory neurons are presented by the lower submatrix gex

0 [401, 480; 0, 400],
where neurons 401-480 are inhibitory. In panel b, the inhibitory connections to the excita-
tory neurons are presented by the upper right submatrix ginh

0 [0, 400; 401, 480]. Inhibitory-
inhibitory connections are presented by the lower right submatrix ginh

0 [401, 480; 401, 480]

If not stated otherwise during the course of this work, I0 = 3.6nA and σ = 3mV . In
total, the network consisted of 480 neurons, where 80 were inhibitory and 400 excitatory.
The network is initialized as described in the methods section 3.3, using the experimental
synaptic weight distribution found in the hippocampus. The mean synaptic strength
of this distribution is at 0.35nS. We will refer to this as the groundstate. A memory
is represented by a set of 100 strongly FF-connected neurons, such that the synaptic
weight distribution is unimodal and long-tailed. The strength of this FF-structure is
referred to as FF-strength and is defined as the average maximum synaptic strength
of connections within the FF-structure. The inhibitory feedback loop is adjusted on
the basis of the FF-strength. The mean Excitatory to Inhibitory connectionstrength
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(E → I) is set to equal the FF-strength. Inhibitory to Excitatory connections (I → E)
take a strength of 0.4 ∗ FF − strength. Inhibitory to inhibitory connections are not
changed. The FF-structure is drawn into the network using equation 2.23 (Fig. 3.1).
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Fig. 3.2: After the embedment of a FF-structure, the neuronal population shows pro-
nounced replay behavior, seen by the upwards diagonal spread of activity (a). The in-
hibitory neuron population is highlighted in red, the FF-connected set in grey. Excitatory
neurons that do not have strong output connections are left with a white background.
The high activity in the inhibitory population keeps the overall network activity in a
stable state as it counterbalances the excitatory signaling. We find that the activity in-
creases, the further a neurons lies within the FF-structure (higher neuron index). The
slight spread of activity across the upper border (white to grey) originates from neurons
that receive strong input but do not have strong output connections. On a smaller time
scale, the replay observed in a is split into clusters of synchronous activity which show
close resemblance to hippocampal ripples (b) [21].

Stability of the synaptic weight distribution

Before we show the results from studying the properties of the plasticity model, an
adjustment to the STDP rule is motivated.
We find that the synaptic weights distribution drawn from the experimentally found
hippocampal data (methods section 3.3) is not stable if the STDP rule is balanced
or LTD-dominated (independent of whether SS is linear or convex) (Fig. 3.3). When
STDP is LTD-dominated or balanced, synapses get potentiated only, if the associated
post- and presynaptic neurons are sufficiently positively correlated. In a spontaneously
active network without external stimuli this is only the case if the synaptic connection
between these two neurons is strong. The initial state or groundstate of the network
analyzed in the current work (based on the hippocampus), is however weakly coupled.
Thereby, many of the connections decay towards zero (Fig. 3.3, a). We adjusted the
STDP rule such that LTP dominates for weak synapses but becomes LTD-dominated
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or balanced with increasing synaptic strength, depending on what parameter τs is
chosen (methods section 2.2.1). This is achieved by making τS weight-dependent in
the sense that its is large (> 5ms) for weak synapses but quickly converges to a given
value (e.g. τS = 3ms) when the synaptic strength rises.

∆g0 = W (∆t) = η


e

− ∆t
τ∗

S
(g0)

[
A+

(
1 − ∆t

τ+,1

)
+ A−

(
1 − ∆t

τ−,1

)]
if ∆t ≤ 0

A+ e
− ∆t

τ+,0 + A− e
− ∆t

τ−,0 if ∆t > 0 ,

(3.1)

where

τ ∗
S(g0) = τS + γe−g0β. (3.2)

With β = 8 and γ = 2. These values show to keep the groundstate of the network
approximately stable such that it matches the initial distribution even after longer
plastic periods with spontaneous network activity (Fig. 3.3, b).
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Fig. 3.3: The initial weight distribution (green) is oriented on experimental EPSP data in
the hippocampus (see methods section ). After 266.7 seconds of simulation (orange), the
synaptic weight distribution shows a shift towards zero in the case of additive LTD dom-
inated STDP (panel a). In order to remain a biologically more accurate distribution, the
width of the LTP domain is set to depend on the synaptic weight, resulting in a weight
distribution that is not much distorted even after longer periods of simulation (panel b).
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3.2 Synaptic plasticity in a network of two single
LIF neurons

Before studying consolidation in larger networks, we believe it is important to show
the properties of our plasticity model for the single synapse. The knowledge gained
from this study is then used to tune the parameters for the larger network simulations
and also to help interpret the results. We address the following two questions:

1. How does τs influence potentiation and depression?

2. How do STDP and SS depend on the synaptic strength, pre- and postsynaptic
activity and dendritic amplification?

We studied STDP and STDP with SS separately for a single neuron pair with a
unidirectional connection (Fig. 3.4). The two neurons each received a constant input
current I0 and Gaussian white noise with SD σ. The model has been simulated for
different input current amplitudes I0 and synaptic strengths, while the noise level has
been held constant at 3mV .

I0+σ

Isyn(t)=g(t,g0)[Esyn-upost(t)]

upost(t)upre(t)

Fig. 3.4: A single excitatory neuron pair, receiving Gaussian white background noise with
standard deviation σ and a constant stimulus current I0, serves as an approximation a
neuron pair embedded in a large network. Correlated input, inhibitory feedback and the
shot noise character of synaptic input are ignored or approximated by Gaussian white
noise.The postsynaptic current Isyn is determined by the synaptic conductance transient
g(t) and the membrane potential upost(t).

Due to the stochastic nature of the spiketrains, a pre-/postsynaptic spike pair can
either result in depression or potentiation of the connection, thereby the synaptic
strength fluctuates. We are only interested in the expected change. Therefore, the
crosscorrelation function between the two neurons is estimated (methods section 2.4.1)
using at least 16.67min. of spiketrain data. Equation 2.18 (methods section 2.2.2) is
then used to calculate the expected synaptic change. The strength of the synapse is
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either given in terms of its conductivity in pS or in terms of the PSC amplitude in pA.
The PSC induced by a presynaptic somatic spike is described by equations 2.3, 2.2
(methods section 2.1.2) and dendritic spikes by equation 2.8 (methods section 2.1.3).

3.2.1 STDP without SS

Does the fact, whether STDP is LTD-dominated, balanced or LTP-dominated have
any major impact on the expected change of a synaptic connection over a wide range
of synaptic strengths and constant background current amplitudes? We indeed find
that this is the case (Fig. 3.5). For defining the STDP rule, the following three values
for τS were used:

• τS = 3ms: LTD dominated

• τS = 4ms: balanced

• τS = 5ms: LTP dominated

Interestingly, our simulations show that LTD-dominated STDP depends on I0 in a
nonlinear, concave way (Fig. 3.5, a,d,g). Synapses are only potentiated if, first, the
synaptic strength is above ≈ 100pA in terms of the PSC amplitude, and second if the
background current I0 is below ≈ 18.4mV . For higher background currents or weaker
PSC amplitudes, the synapse experiences depression (Fig 3.5, a,d). This is in contrast
to LTP-dominated STDP, where potentiation is always stronger than depression (Fig.
3.5, c,f). Further, potentiation increases approximately linear (slightly nonlinear,
convex) with I0 for LTP-dominated STDP and does not converge to a maximum within
the examined range (Fig. 3.5, c,f,i). When STDP is balanced, potentiation reaches a
maximum or at least seems to converge within the examined range for I0 (Fig. 3.5,
b,e). Further, potentiation dominates over depression for almost all values of synaptic
strength. Depression only occurs for very weak synapses at background currents above
16mV . (This however means that our STDP rule is not balanced in a very strict sense,
because it is not odd but asymmetric).

Similarly, LTD-dominated, balanced and LTP-dominated STDP differ in their de-
pendence on the synaptic strength. They however share the property that potentiation
increases sigmoidal with the synaptic strength and not e.g. linear (what one might
naively expect). This can be explained by two properties of the model. First, the
probability that a presynaptic spike evokes a response from the postsynaptic neuron
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Ptransm (methods section 2.5) does grow concave with the PSC amplitude (Fig. 3.6, a).
Second, apart from Ptransm, the timing is important for STDP.

LTD-dom. balanced LTP-dom.
a

1.3 510.75
PSC in pA

18.4

17.4

16.3

15.3

I 0
;P

re
,I
0
;P

o
st

in
 m

V

400

0

400 d
g
0 /d

t
in

p
S
/s

b

1.3 510.75
PSC in pA

18.4

17.4

16.3

15.3
I 0
;P

re
,I
0
;P

o
st

in
 m

V
0

400

800

d
g
0 /d

t in
 p

S
/s

c

1.3 510.75
PSC in pA

18.4

17.4

16.3

15.3

I 0
;P

re
,I
0
;P

o
st

in
 m

V

800

1600

2400

d
g
0 /d

t in
 p

S
/s

d

16.0 18.0
I0 in mV

-500.0

0.0

d
g
0
/d

t 
in

 p
S
/s

= 60.0 pS, = 3 mV

S=3 ms, = 2

PSC=13 pA
PSC=278 pA

PSC=543 pA
PSC=808 pA

e

16.0 18.0
I0 in mV

0.0

500.0

1000.0

d
g
0
/d

t 
in

 p
S
/s

= 60.0 pS, = 3 mV

S=4 ms, = 1

PSC=13 pA
PSC=278 pA

PSC=543 pA
PSC=808 pA

f

16.0 18.0
I0 in mV

0.0

1000.0

2000.0

d
g
0
/d

t 
in

 p
S
/s

= 60.0 pS, = 3 mV

S=5 ms, = 1

PSC=13 pA
PSC=278 pA

PSC=543 pA
PSC=808 pA

g

0.0 500.0 1000.0
PSC in pA

-250.0

0.0

250.0

500.0

d
g
0
/d

t 
in

 p
S
/s

= 60.0 pS, = 3 mV

S=3 ms, = 2

I0=15.6 mV
I0=16.6 mV

I0=17.5 mV
I0=18.5 mV

h

0.0 500.0 1000.0
PSC in pA

0.0

500.0

1000.0

d
g
0
/d

t 
in

 p
S
/s

= 60.0 pS, = 3 mV

S=4 ms, = 1

I0=15.6 mV
I0=16.6 mV

I0=17.5 mV
I0=18.5 mV

i

0.0 500.0 1000.0
PSC in pA

0.0

500.0

1000.0

1500.0

2000.0

d
g
0
/d

t 
in

 p
S
/s

= 60.0 pS, = 3 mV

S=5 ms, = 1

I0=15.6 mV
I0=16.6 mV

I0=17.5 mV
I0=18.5 mV

Fig. 3.5: STDP induced potentiation or depression varies depending on whether STDP is
LTD-dominated, balanced, or LTP-dominated. The expected synaptic change has been es-
timated for different background currents I0 and PSC amplitudes for a single neuron pair
receiving Gaussian white noise with SD σ. This has been done by calculating the crosscor-
relation function from spike train data and subsequent integration with the STDP learning
window to receive the synaptic change in pS/Spike. The synaptic change in pS/s is de-
rived via multiplication with the presynaptic firing rate. LTD-dominated STDP (a,d,g)
leads to depression for small PSCs and for high I0, while for balanced STDP (b,e,h) de-
pression can only be found for very weak synapses at high I0. LTP-dominated STDP
(c,f,i) always potentiates synapses. STDP depends concave on I0 for LTD-dominated and
balanced STDP but linear (slightly convex) for LTP-dominated STDP (d,e,f). However,
all three STDP rules show a sigmoidal dependence on the PSC amplitude. λ in the legend
is the power of g0 in the SS function.

When the PSC increases, the postsynaptic response occurs at earlier times, which,
due to the exponential shape of the STDP rule, results in a nonlinear growth of
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Fig. 3.6: The transmission probability in terms of the PSC amplitude follows a concave
function and is higher for low background currents I0 (a). Thereby, STDP induced poten-
tiation is always strongest for strong PSCs at low I0 (b). However there seems to be no
correlation between the effective ,membrane potential and the transmission probability
(c). The postsynaptic activity increases significantly with the strength of its presynaptic
connection and up to doubles at strong PSCs (d). The synaptic change has again been
calculated via the crosscorrelation function and integration with the STDP learning win-
dow.The transmission probability Ptransm has been calculated by integrating over the
positive part of the crosscorrelation function at positive times (see methods section 2.5).

potentiation, reaching its maximum if the postsynaptic response occurs instantly.
Interestingly, Ptransm does not reach 1 even for strong PSC amplitudes. This is the case,
because there is always a certain probability that the neuron is driven over the spiking
threshold by the background current directly before the arrival of presynaptic spike.
In that case the subsequent refractory period prohibits a direct response to the PSC.
A PSC evoked response directly after the refractory period is also not possible since
the membrane potential has to recover from the reset potential (uth − ureset = 10mV ).
Thereby, the higher the postsynaptic activity (equivalent to high I0), the lower the
probability that a stimulus evokes a response. This effect is also examined in the
synaptic change per spike (figure 3.5 is in pS/s), which is highest at low I0 and strong
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PSCs (Fig. 3.6, b). Note that Ptransm shows no correlation with the effective membrane
potential (Fig. 3.6, c), which one could expect, since a higher effective membrane
potential means that the average distance between membrane potential and spiking
threshold is lower. At last, we find that at low I0 and strong PSCs, the postsynaptic
rate up to doubles relative to the postsynaptic rate (Fig. 3.6, d).

3.2.2 STDP with SS

In the preceding section the properties of STDP were studied. It is now appropriate to
expand the model by SS and dendritic spikes. We address the following question: Does
STDP and SS lead to distinct up (potentiation) and downscaling (depression), such
that memory consolidation is possible? We state that it is only possible to consolidate
a memory if we find at least three distinct regimes of potentiation and depression:

1. Depression for weak synapses (to the groundstate not to zero),

2. potentiation for intermediate synaptic strength,

3. depression for strong synapses.

Otherwise, synapses would either all decay or grow towards one state, which is
equivalent to loosing the memory that is decoded in a network.

We studied synaptic plasticity for LTD-dominated, balanced and LTP-dominated
STDP in combination with either linear or convex SS. Further, simulations were done
with and without dendritic amplification. The dendritic spiking threshold was set to
θ = 43nS, which lead to the emission of dendritic spikes at PSCs of ≈ 200pA. The
individual learning rates for STDP (η) and SS (ηSS) define how much each mechanism
changes the synaptic strength respectively. They were set such, that the maximum
potentiation is around 100pS/s, while synaptic depression starts at PSCs of ≈ 400pA

with dendritic spikes and ≈ 700pA without dendritic spikes (Fig. 3.8). Remember that
dendritic spikes introduce a strong and fast current and thereby significantly enhance
the correlation between neurons. As before, the expected synaptic change has been
estimated for different I0 and synaptic strengths (PSCs), while σ = 3mV .

We find that synaptic plasticity is partitioned into three regimes regarding the PSC
amplitude if STDP is LTD-dominated or balanced (Fig. 3.8, a-h). For LTP-dominated
STDP three regimes are only found with dendritic amplification and if SS is linear
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(Fig. 3.8, i). This result is explained in the following (However, only LTP- and
LTD-dominated STDP are discussed, the explanation for balanced STDP should follow
intuitively as a boarder case).
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Fig. 3.7: Because of the way STDP depends on the synaptic strength/PSC (nonlin-
ear/sigmoidal), three distinct regimes of depression and potentiation are only possible
under certain conditions. If STDP is LTD dominated (a, black curve), i.e. weak synapses
experience STDP induced depression, linear (dark green) as well as convex (light green)
SS can be set such that STDP induced potentiation is stronger than SS induced depres-
sion in an intermediate regime of the synaptic strength, while a lower and upper regime
induce depression. If STDP is LTP dominated (b), SS-induced depression is not strong
enough for weak synapses to predominate depression. However when dendritic spikes are
evoked at some threshold θ (c), SS might still not predominate very weak connections but
generate a depression regime for intermediate strengths before the inset of dendritic spikes.

LTD-dominated STDP+SS: If LTD is dominated, depression occurs for weak
synapses due to STDP and SS. If ηSS is chosen such that SS induced depression
increases slower with the synaptic strength than STDP-induced potentiation, synapses
with intermediate strengths experience potentiation. However, since STDP depends
sigmoidal on the PSC, SS will eventually predominate STDP (Fig. 3.7, a (sketch)).

LTP-dominated STDP+SS: If the LTP regime in the STDP rule is however
too brought, such that even weak synapses experience a lot of potentiation, the first
depression regime cannot be established (Fig. 3.7, b (sketch)). Dendritic spikes however
introduce a sudden increase in the correlation between pre- and postsynaptic neuron
at the dendritic spiking threshold θ. Thereby, ηSS can be highly increased, such that
weak synapses get downscaled even if STDP is LTP-dominated, while we still find a
potentiation regime for intermediate synaptic strengths (Fig. 3.7, c (sketch)). However
this is only true for linear SS and for the parameters chosen here. If τs > 5ms the
three regime structure will eventually break also with dendritic spikes.
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Further, a different threshold for the emission of dendritic spikes could also result
in the loss of either the first depression regime or the potentiation regime.

Whether SS is linear or convex mainly only effects at what rate SS starts to
dominate over STDP with increasing PSC. This leads to broader potentiation regimes
in the case of linear SS compared to convex SS. Further, we find that LTP-dominated,
balanced and LTD-dominated STDP with SS depend different on I0 (As follows from
the preceding section). When STDP is LTD-dominated, the potentiation regime is
completely lost at high I0 > 17mV (Fig. 3.8, a-d). In the case of LTP dominated
STDP, potentiation increases continuously with I0 for synaptic strengths that lie below
the regime in which SS induced depression dominates (Fig. 3.8, i-l).

Based on the results shown in figure 3.8 we chose the most promising parameter
sets that might enable the consolidation of a FF-structure with dendritic amplification.

1. LTD-dominated STDP + convex SS+dendritic amplification (Fig. 3.8, d)

2. balanced STDP +convex SS+dendritic amplification (Fig. 3.8, h)

3. LTP-dominated STDP+linear SS+dendritic amplification (Fig. 3.8, k)

Note however that the parameter for ηSS has been slightly adjusted for network
simulations. Results for networks without dendritic amplification will only be shown
at the very end of the section.

3.3 Consolidation of FF-memory representations
We find that FF-structures in a spiking neural network get scaled up or down during
spontaneous network activity, depending on the FF-strength, using our plasticity model.
This process of up- and downscaling will be referred to as consolidation. We find
however, that depending on the model parameter, the FF-structure may not entirely
be preserved but gets fractured during consolidation.

The previous section has given an overview over how different STDP rules in
combination with either linear or convex SS change the synaptic strength between two
neurons. In this section, the results from simulating a network under balanced and
LTD-dominated STDP with convex SS and LTP-dominated STDP with linear SS are
presented.
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Fig. 3.9: STDP with SS in a spiking neural network with active dendrites distinctively up- and
downregulation connections in the FF-structures, thereby transforming the initially long-tailed
unimodal into a bimodal distribution (j,k,l). We simulated a network of inhibitory and excitatory
LIF neurons, where a subset of the excitatory neurons had strong FF-connections with neurons
with neighboring place fields. Panels a-i show the synapses within the FF-structure as a function
of the place cell distance (In green before the simulation, in red after). The STDP and SS learning
rates and mean excitatory activity are given in the legends. We studied the three cases of LTD-
dominated and balanced STDP with convex SS and LTP-dominated STDP with linear SS. We find
in all three cases that the FF-structure gets downregulated on average (red line). FF-structures
that lie above the dendritic spiking threshold however retain a number of strong connections (get
consolidated) (b,c,e,f,h,l), whereas those below get completely downregulated to the groundlevel,
which is associated with the loss of the of the memory encoded in the FF-structure (a,d,g).
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The learning rates η and ηSS for STDP and SS are chosen such, as to lead to an
upper limit for synaptic growth that lies around 4 − 6nS. This choice has been made
to keep the synaptic strengths in a biologically plausible regime.

Synaptic plasticity is only activated after a certain runtime (≈ 67s). During the
first static simulation period, quantities such as mean activity and matching index are
collected. The plastic period ends when the synapses in the network have approximately
reached a steady state. Subsequent, the matching index and other quantities are again
measured for ≈ 67s. Experiments show that the firing rate of pyramidal neurons in
the hippocampus lie around 0 − 10Hz, with population mean firing rates of 1 − 2Hz

during wake and SWS [46]. Therefore, the constant background current is set to a
value such that this average firing rate is approximately reached. This is found to be
the case for I0 = 0.36nA at a background noise value of σ = 3mV . Neurons within the
FF-structure have higher firing rates and the mean firing rates change depending on
the strength of the FF-structure, I0 is however not adjusted.

Our network simulations show that after a plastic simulation period of 266s, the
synapses in the FF-structure are clearly divided into a set that retains a certain strength
above, while the rest returns to the ground state (Fig.3.9). Thereby, a bimodal weight
distribution evolves (Fig. 3.9, j,k,l). Synapses are however only consolidated if the
FF-structure has a minimum strength. Weak structures decay entirely back to the
groundstate (Fig. 3.9, a,d,g). We find that linear SS leads to a broader synaptic
distribution of consolidated synapses than convex SS (compare Fig. 3.9 k with l). This
is the case because a small shift in the synaptic strength enters convex SS quadratically.
Thereby the upper bound for the synaptic strength is sharper than for linear SS, where
the depression magnitude increases more gradually (linear) with the synaptic strength.
Synapses can get consolidated if their initial synaptic strength lies above the dendritic
spiking threshold which is set to θ = 43nS (corresponding to a PSC amplitude of
200pA or a FF-strength of ≈ 3nS). In the following, results are only shown for the
model with balanced STDP and convex SS, as most of the results are the same for the
other models. If this is not the case, the results for LTP-dominated or LTD-dominated
STDP will be added.

Fracturing of the FF-structure

While some synapses get consolidated, we find that the majority of synaptic connections
within the FF-structure actually get back to the ground state. The ratio of strong
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synapses that get consolidated to those that decay to the groundstate defines the con-
solidation index C (Fig. 3.10, c). We find that even strong FF-memory representations
have a consolidation index of at maximum 0.3, i.e. on average each neuron looses
around 70% of its strong connections. This leads to an average downscaling but also
fractures the feed-forward structure. The probability distributions for the number of
strong input and output connections per neuron show that while around 75% of the
neurons preserve a strong input connection, more than 40% do not retain a strong
output connection (Fig. 3.10, a,b). The expected length of a feedforward-structure
after consolidation can be calculated from these two distributions.
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Fig. 3.10: Consolidation results in the loss of most strong synapses. A small subset of
strong synapses that belong to the presynaptic neuron with the smallest firing rate differ-
ence to the postsynaptic neuron is however retained. Panels a, b show the probability of
a neuron to retain a strong (>2 nS) input or output connection after consolidation (for
FF-strength=7.5nS). The number of consolidated synapses increases with the FF-strength
but converges to a level of 30% of consolidated synapses (c), which corresponds to ≈ 1
synapse per neuron with the here chosen number of intial strong connections (set by the
FF-width). Panel d shows the trajectories of consolidated synapses for 266 s of simulation.
The difference in synaptic strength between the consolidated synapse g0;i,c and its oppo-
nent synapses that did not get consolidated g0;i,f show that while consolidated synapses
are stronger than the average, there are synapses that are stronger but did not consoli-
date (e). The difference in pre- and postsynaptic activity for these cases is shown in panel
f, from which we conclude that a small difference in activity is the critical factor in our
consolidation model that determines whether a synapse consolidates or returns to the
groundstate.
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We find that, under the condition that a neuron has only one output connections,
the expected number of strong synaptic connections that would start out from this
connection is only 3.1. In other words, after consolidation a FF-structure would fracture
into smaller ones, which on average contain 3 strong (consolidated) connections. Even
if the initial condition is changed, such that the first neuron of the FF-structure has 6
strong output connections, the expected length is ≈ 8.7.

As each neuron retains only one strong input connection, we address the question,
when do synapses consolidate and when not? First, we find that under all the strong
synaptic connections a neuron receives, the stronger ones are more likely to consolidate
(Fig. 3.10, e). However, synaptic strength alone does not guarantee that a synapse
wins in the competition for consolidation against opponent input connections. In many
cases, the synapse that gets consolidated is above the mean synaptic strength but is not
the strongest one. A second important factor is the difference in pre- and postsynaptic
firing rate. We find that whenever the stronger synapse does not consolidate, the
difference between post- and presynaptic firing rate is higher than for the weaker
synapse that does consolidate (Fig. 3.10, c). Note that the synapses that consolidate
do reach a steady state (Fig. 3.10, d)
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Fig. 3.11: Despite the general down regulation of the FF-structure, the replay quality of
synapses that lie above the ground state increases significantly during consolidation (a).
The replay quality measured in terms of the matching index doubles on average, indepen-
dent of the initial FF-strength. The mean and variability of the matching indices’s are
calculated from the matching index distribution over all potentiated synapses (b).
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Consolidation enhances memory replay

We find that the replay of memory representations in form of a FF-structure is enhanced
after consolidation. To measure the quality of memory replay, the matching index M

is used (methods section 2.4.2). The matching index is calculated before and after
consolidation for each strong synapse (i.e. not for those synapses that got set back to
the ground state after consolidation). From the matching indices’s we get the matching
index distribution over the synapses (Fig. 3.11, b). After consolidation there is a
clear shift in the matching index distribution towards one, i.e. towards the correct
order of replay at the single neuron pair level. It does however say nothing about the
higher order correlations in the network activity. The mean matching index always
converges to ≈ 0.6, compared to a mean matching index of ≈ 0.25 before consolidation,
independent of the initial FF-strength (Fig. 3.11, a).

3.4 Influence of different parameters on the consol-
idation dynamics

3.4.1 Different FF-structure-widths

We find that the number of consolidated synapses does not change significantly with the
FF-width (Fig. 3.12, a-c)(The observed fluctuations were only around ∆Nsyn

cons

Nsyn
cons

≈ 0.2
and not enough data has been gathered that would allow any statement). The FF-
width has however a greater influence on the spiking dynamics of the network. Narrow
FF-structures show less pronounced ripples with less participating neurons (Fig. 3.12,
d compared to e). This is however to expect as a narrow FF-structure couples (and
therefore synchronizes) less neurons. The matching index is influenced only very little
but decreases slightly with the FF-width (Fig. 3.12, f). The slight decrease can be
explained by the higher network activity for broader FF-structures. A higher activity
means that each neuron receives more spikes from different presynaptic neurons, this
perturbs the communication between individual neuron pairs and thereby the order of
firing.
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Fig. 3.12: The width of the FF-structure has no major impact on the number of con-
solidated synapses or the replay quality (a,b,c). The ripple generation however varies
depending on the FF-width (d,e). Narrow structures result in smaller clusters of synchro-
nized neurons, firing simultaneously. Thereby the ripples are smaller (less pronounced) in
d (narrow) compared to e (wide). The replay quality in terms of the matching index M is
however not significantly changed by the FF-width (f). The width has been decreased in
steps of 50% from panel a-c.

3.4.2 Multiple memory representations and recurrent assem-
blies

Our network simulations show that STDP and SS not only enable a network with
a single strong FF-structure to consolidate a subset of its synapses, but that the
same holds true for networks with multiple distinct FF-structures (Fig. 3.13 a, 3.14).
Further, even random recurrent cell assemblies can get consolidated (Fig. 3.13 b, 3.15),
however different for LTP-dominated STDP than for balanced or LTD-dominated
STDP.

A network with two distinct FF-structures, where one is weak (such that the
dendritic spiking threshold is not reached) and the other strong, results in the deletion
of the weak structure (Fig. 3.14 b), while a subset of synapses of the strong one is
preserved strong (Fig. 3.14 a). Pronounced replay is limited to the neurons that are
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part of the strong encoded FF-structure (Fig. 3.14 c).
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Fig. 3.13: Panel a shows the excitatory weight matrix of a network that inhabits two dis-
tinct FF-structures. One represented by the lower diagonal in the upper left, the other rep-
resented by the lower diagonal in the lower right. The upper structure has been strongly
encoded with weights reaching up to 10nS, while the lower structure has only been weakly
encoded. Panel b shows the excitatory weight matrix for a random recurrent assembly,
inhabiting 200 neurons.
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strong synapses, while the weak one got consistently downregulated across all stronger
synapses. Further, both structures exhibit different spike dynamics. The neurons belong-
ing to the strong FF-structure show pronounced replay and ripple generation while the
weak FF-structure does not (c).
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The spontaneous activity in a network with random recurrent cell assemblies leads
to different consolidation results for LTD-dominated and balanced STDP compared
to LTP-dominated STDP (Fig. 3.15). We find that a cell assembly containing 200
neurons does not consolidate in the case of LTD-dominated and balanced STDP but
for LTP-dominated STDP, if ηSS is not changed compared to previous simulations (Fig.
3.15, a,b,c).

LT
P

-d
om

.+
lin

.
SS

a b

-1.00 0.00 1.00
matching index M

0.00

1.00

2.00

3.00

4.00

0 s
266.7 s | SS=0.006 nS | =0.06 nS | rex=37.1 Hz

c

399.6 399.8 400.0
t in s

0

480

N
eu

ro
n 

in
de

x

ba
l.+

co
nv

.
SS

d e

-0.50 0.00 0.50
matching index M

0.00

1.00

2.00

3.00

0 s
266.7 s | SS=0.00075 nS | =0.06 nS | rex=20.5 Hz

f

399.6 399.8 400.0
t in s

0

480

N
eu

ro
n 

in
de

x

Fig. 3.15: Random recurrent cell assemblies consolidate different depending on their size,
the SS learning rate and whether STDP is LTP-dominated or not. A strong recurrent cell
assembly has been embedded into a random network and simulated for 266.7 s under the
influence of LTP-dominated STDP and linear SS (a,b,c). When STDP is LTP-dominated,
neurons in large recurrent assemblies (containing 200 neurons) retained around 9.4 strong
input connections that converged to a steady state between 2.5 and 6nS (a). Further, the
matching index distribution broadened, indicating an increment in the temporal structure
of the replay (b). The replay was periodic, ripple-like and consistent (c). Balanced and
LTD-dominated STDP were only able to consolidate a recurrent assembly if the learning
rate ηSS was decreased by half compared to previous FF-structure simulations. Despite,
only about 2 strong connections per neuron were retained (not shown here). Decreasing
the assembly size to 100 neurons led to the same result (d,e,f). However, the assembly
exhibited pronounced replay and ripples that was not consistent but occurred in tempo-
rally separated phases (f). Moreover, the matching index distribution became bimodal,
indicating highly temporally ordered firing of strong connected neuron pairs.
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We find these different results, because the STDP rules respond different to the self-
amplification of activity in a recurrent assemblies. It has been shown in section 3.2 (see
figure 3.8) that higher background currents (which raise the network activity), lead to
weaker potentiation in the case of LTD-dominated and balanced STDP, while potentia-
tion stays relatively strong for LTP-dominated STDP. Thereby, if the self-amplificatory
effect of activity is too strong, depression will dominate for LTD-dominated STDP and
balanced STDP, which leads to the down-regulation of the recurrent assembly to the
groundstate. If, in the LTP-dominated case, the recurrent assembly consolidates, we
find that the replay quality enhances (Fig. 3.15, b). Because in a recurrent assembly,
the order of firing has no true or false direction, this shows up in an increase in variance
of the matching index distribution, not in a shift of the mean towards one. Despite,
we find no splitting of the distribution into neuron pairs that fire in one or the other
direction. Further, the number of consolidated synapses is a lot higher than in the
FF-case with ≈ 9 consolidated synapses per neuron. As in the FF-case, the assembly
shows ripple like activation (Fig. 3.15, c), which is however regular and persistent. If
we decrease the assembly size to 100 neurons and at the same time decrease ηSS by
half, we find that also LTD-dominated (therefore also balanced STDP) leads to the
consolidation of the assembly (Fig. 3.15, d,e,f. However, the number of consolidated
synapses is much smaller (≈ 2 synapses per neuron). Further, the consolidation process
has a stronger effect on the replay. While in the LTP-dominated case, the matching
index distribution solely broadened, here we find that the distribution splits into a
bimodal distribution (Fig. 3.15, e). This means that after consolidation the order
of firing is very distinct in either one or the other direction for single neuron pairs.
Moreover, the network exhibits ripple like activity, which is not regular but occurs
more randomly than in the case of LTP-dominated STDP (Fig. 3.15, f).

3.4.3 Changing the background noise

We find that the background noise σ the network receives biases the outcome of the
network consolidation process. In the before shown simulation results, σ has always
been set to 3mV . If we increase the noise to σ = 5mV , we find that all synapses within
the FF-structure decay to the groundstate, i.e. no synapses consolidate (Fig. 3.16,
a). Further, the network activity and FF-replay become noisy and in conclusion the
distinct ripples disappear (Fig. 3.16, b).

Interestingly however, the matching index distribution (before consolidation) does
not change much compared to when σ = 3mV (Fig. 3.16, c). If the background noise
level is decreased to σ = 1mV , a subset of synapses stays above the groundstate (Fig.
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Fig. 3.16: The background noise magnitude influences whether and how FF-structures
consolidate. A network with strong FF-connectivity has been simulated with background
noise (σ = 1mV ) (d-f) and high background noise (σ = 5mV ) (a-c). The background
current has been adjusted such that in both cases the mean excitatory firing rate lies
around 2Hz − 5Hz. At high background noise, the FF-structure does not get consolidated
(a). Further, the memory replay in the initial state is weak and unpronounced (b). The
matching index distribution however only changes slightly compared to σ = 3mV (c). Low
background noise ’blurs’ the FF-structure and results in the growth of strong recurrent
connections (d). The replay occurs in strong bursts (e). The matching index distribu-
tion shows a small shift towards 1 and the growth of a second mode at negative values,
associated with the new strong recurrent connections (f).

3.16, d). However, the FF-structure is broadened and strong recurrent connections
evolve. This change in the consolidation process occurs, because the lower noise
level allows the neurons to fire more synchronous and activity spreads though the
FF-structure with less disturbance (Fig. 3.16, e).The more synchronized activity
however also results in more STDP induced potentiation. This supports the growth
of weak synaptic connections that belong to neurons in the FF-structure, such as
recurrent connections. At low noise levels, the matching index distribution evolves
a second mode during consolidation which has its mean at negative values of the
matching index (Fig. 3.16, f).The new mode accounts for the increased occurrence of
activity spread in opposite direction (to the FF-structure), because of the new strong
recurrent connections. The mode accounting for the activity spread in direction of the
FF-structure however still shows a shift towards one (Fig. 3.16, e).
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3.4.4 Impact of background current and inhibitory feedback

Inhibition and the background current have similar effects on consolidation but different
for LTD-dominated and balanced STDP compared to LTP-dominated STDP. If in the
following shown results, the background current is changed, the inhibitory feedback is
held at I → E = 0.4 ∗ FF − strength and E → I = FF − strength. If the inhibitory
feedback is changed, the background current is held at I0 = 0.36nA and I → E and
E → I are changed by the same factor. Lowering the background current amplitude
and increasing the inhibitory feedback strength both decrease the network activity
and increase the memory-replay quality. On the other hand,increasing the background
current and lowering the inhibitory feedback both increase the network activity but
result in slightly different network dynamics and consolidation results (Fig. 3.17).
However this difference is small.

Increased activity

We find that if the background current is high (here I0 = 3.9nA), such that the mean
excitatory firing rate is around 9Hz, the FF-structure no longer consolidates in all
three cases of STDP. Moreover, the replay is noisy and ripples are almost gone (Fig.
3.17, a, e). In contrast, if the inhibitory feedback is low, such that the mean excitatory
firing rate is also at about 9Hz, synapses still consolidate and while the replay also
becomes noisy, ripples are , while also spread, less noisy than for high I0 (Fig. 3.17,
b, f). However, if STDP is LTP-dominated, lowering the inhibition leads to strong
recurrency (see following subsection).

Decreased activity

If the network activity is decreased to low values around 2Hz, the ripples become
more pronounced and the replay less noisy. However, whether the activity is decreased
by adjusting the inhibitory feedback or the background current shows to make no
major difference in the consolidation process or the network dynamics (Fig. 3.17,
c, g and d,h). In general (whether the network activity is altered via inhibition
or the background current), a higher network activity results in a worse matching
index before the consolidation. If the FF-structure gets consolidated, the matching
index is however enhanced (Fig. 3.18). We find that, if the inhibitory feedback is
above 1nS (corresponding to a network activity of ≈ 7Hz), the mean of the matching
index distribution always converges to ≈ 0.6 during consolidation, independent of the
inhibitory feedback strength (Fig. 3.18, b).
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Fig. 3.18: The mean matching index (M) decreases with increased activity induced by
lower inhibition or increased background current I0. The mean matching index and its
variance are calculated from the matching index distribution over all strong synapses
(> 2nS). Inhibition and I0 influence the network activity. Therefore the activity is the
network property upon which the replay quality due to I0- or inhibition-changes are
compared. Increasing I0 (a) results in a noticeable change in M after consolidation (red
line) already at network activities > 4Hz, while decreased inhibitory feedback (b) does
not change M up to at least 6.8Hz (b). The inh.-strength on the x-axes is the I → E
strength, however E → I is changed with the same factor. The coefficient of variation
(CV) of the inter-spike-timing intervals (before consolidation) increases with the firing rate,
i.e. also the single neuron fires less regular (c).

In contrast, raising the background current leads to a drop in the mean matching
index already at a network activity of ≈ 3Hz (Fig. 3.18, a). In comparison, if the
inhibitory feedback is such that the network activity is at 6.8Hz, the mean matching
index is still at 0.6 after consolidation. For an adjusted background current, the
matching index lies at ≈ 0.4 at a network activity of 6.7Hz. The coefficient of variation
(CV 1) of the inter-spike-timing intervals (before consolidation) increases with the firing
rate ((Fig. 3.18, c). Therefore not only the temporal structure of activity between
neurons decreases with the network activity but also the firing of the single neuron
becomes less autocorrelated.

lowering the inhibition and increasing I0 for LTP-dominated STDP

We find that in the case of LTP-dominated STDP, low inhibitory feedback results in
the transformation of the FF-structure to a recurrent cell assembly (Fig. 3.19, b).
Further, while at a background current of I0 = 3.9nA, the FF-structure vanishes (as
in the balanced/LTD-dominated case), increasing the background current further to
I0 = 4.2nA, results in the hole network scaling up drastically if STDP is LTP-dominated

1The CV is defined as the ratio of the standard deviation to the mean
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(Fig. 3.19, a). Note that in the case of lowered inhibition not the hole network scaled
up but only synapses belonging to neurons within the FF-structure.

I0 = 4.2nA E → I = 5nS I → E = 2nS
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Fig. 3.19: When STDP is LTP-dominated, lowering the inhibition or increasing I0 can
result in the growth of large recurrent assemblies. I0 has been increased to 4.2nA (a),
resulting in the potentiation of the hole network. Lowering the inhibition (b) also lead to
the growth of recurrent connections, however limited to connections belonging to neurons
within the FF-structure.

3.4.5 Fragmentation of the FF-structure during consolidation

We found that STDP in combination with SS can consolidate FF-structures and result
in an enhanced memory replay. However with the downside that most of the strong
connections are lost, which fractures the FF-structure. A small microcircuit with STDP
and with STDP and SS has been simulated to shed some light on this issue. 16.67 min.
of spiketrain data has been captured from the simulations to get an estimate for the
crosscorrelation function, from which the synaptic change in pS/s has been calculated.
The microcircuit consisted of a single postsynaptic neuron, receiving dendritic spikes
and input from a number of presynaptic neurons, where all connections had the same
strength. Simulations were done for a number of 1 − 6 presynaptic neurons and for
different connectionstrengths (Fig. 3.20). All neurons received a background current
I0 = 16.5mV and noise with σ = 3mV . We find that the magnitude of potentiation
a synapse experiences decreases with the increasing number of opponent presynaptic
neurons (Fig. 3.20, a).Moreover, the ratio of postsynaptic to presynaptic firing rate up
to doubled for each additional connection at the inset of dendritic spikes (≈ 200pA)
(Fig. 3.20, c).
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Fig. 3.20: Each additional strong input a neuron receives lowers the potentiation per
synapse (a) and up to doubles the postsynaptic activity (c). Therefore SS induced depres-
sion highly increases, such that potentiation is only present in the case of a single strong
input (b). The synaptic change has been estimated via the crosscorrelation function which
has been estimated from spiketrain data. We did simulations for a single postsynaptic neu-
ron and varied the number of presynaptic inputs from 1 − 6 (synaptic strengths were equal
for all connections). Panel a shows the synaptic change for balanced STDP without SS,
panel c the ratio of postsynaptic to presynaptic firing rate depending on the number of
inputs and the PSC amplitude. Panel b shows the synaptic change with balanced STDP
and convex SS. The learning rates were η = 60pS and ηSS = 0.05pS.

The higher postsynaptic firing rate in turn increases depression due to SS by up to
a factor of two for each additional connection. This finding states the general problem
with SS, as it depresses connections to presynaptic neurons that fire slower than the
postsynaptic neuron. In our model, the amount, by which SS scales down connection
does not depend on the difference between pre- and postsynaptic neuron but solely
on the postsynaptic rate. However, potentiation is induced by STDP only around a
small time window, when the presynaptic neuron fires. Therefore, if the presynaptic
activity is low compared to the postsynaptic neuron, potentiation is slow compared to
depression via SS. This becomes a problem in FF-structures, where the neural activity
increases, the further down a neuron ’sits’ within the structure. We therefore here
propose two adjustments that could be made to the model:

1. the reduction of the learning rate ηSS for SS

2. intrinsic plasticty

Intrinsic plasticity [58] describes the mechanism of an adaptive spiking threshold
that changes such that the neuron fires at a target rate. The mechanism is implemented
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as follows: Each time the neuron fires, its firing threshold is increased by an amount
∆uth = 0.3mV . As long as the neuron does not exhibit a spike, the spiking threshold
decreases with a time-constant τIP = 0.2s according to

duth

dt
= −∆uth

τIP

(3.3)

The target firing rate is thereby set by the decay time constant via r = 1/τIP =
0.2s = 5Hz, because τIP is the time it takes for the threshold to get back to the level
at which the last spike was evoked.

Thereby, intrinsic plasticity adjusts the firing rate of each neuron to a target firing
rate, independent of the input the individual neuron receives.

Both approaches result in a larger number of synapses experiencing potentiation
(Fig. 3.21).
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Fig. 3.21: Lowering the SS learning rate or setting a target firing rate for the neurons via
intrinsic plasticity increases the number of consolidated synapses. The simulations with
intrinsic plasticity have been done for a target firing rate of 5Hz (b). The simulation for
reduced SS (a) were done with ηSS decreased by half (ηSS = 0.75pS). STDP has been
balanced in both cases.

Lowering the SS learning rate

We find that lowering the learning rate ηSS for SS results in a larger set of consolidated
synapses in the case of LTD-dominated and balanced STDP but leads to the growth of
a recurrent cluster in case of LTP-dominated STDP (Fig. 3.22). ηSS has been reduced
by half, compared to previous simulations. This decreases the competition between
STDP and SS and therefore results in a broader synaptic weight distribution with
stronger synapses and also leads to the consolidation of more synapses.

However, the larger pool of strong synapses in the network also increases the activity.
The activity is highest at the end of the FF-structure, where it results in the growth of



3.4 Influence of different parameters on the consolidation dynamics 68

LTD-dom. balanced LTP-dom.
a

-0.2 0.0 0.2 0.4
Place cell distance in m

0.0

2.0

4.0

6.0

8.0

Sy
n.

 s
tr

en
gt

h 
in

 n
S

Nsyn
final/Nsyn

initial=0.97

0 s
266.7 s | SS=0.000375 nS | =0.06 nS | rex=4.5 Hz

b

-0.2 0.0 0.2 0.4
Place cell distance in m

0.0

2.0

4.0

6.0

8.0

Sy
n.

 s
tr

en
gt

h 
in

 n
S

Nsyn
final/Nsyn

initial=0.98

0 s
266.7 s | SS=0.00075 nS | =0.06 nS | rex=4.5 Hz

c

-0.2 0.0 0.2 0.4
Place cell distance in m

0.0

5.0

10.0

15.0

Sy
n.

 s
tr

en
gt

h 
in

 n
S

Nsyn
final/Nsyn

initial=0.98

0 s
266.7 s | SS=0.003 nS | =0.06 nS | rex=3.9 Hz

Fig. 3.22: Lowering ηSS by half results in the consolidation of more synapses. However,
the FF-structure is only retained if STDP is balanced or LTD-dominated. The consolida-
tion process is best for LTD-dominated STDP (a), where mainly strong synapses within
the FF-structure retain strong. Balanced STDP also consolidates the FF-structure, how-
ever the distribution becomes more ’fuzzy’, and strong recurrent connections (place cell
distance < 0) start to emerge (b). For LTP-dominated STDP, consolidation is no longer
stable and breaks the FF-structure (c).
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Fig. 3.23: When ηSS is divided by half, the emergence of strong recurrent connections
occurs mainly at the end of the FF-structure, where the network activity is highest. Panel
a shows the excitatory weight matrix for balanced STDP after consolidation. As seen, the
FF-structure is retained. Panel b shows the excitatory weight matrix for LTP-dominated
STDP after consolidation where first, the beginning of the FF-structure is almost dissolved
and second, the end of the FF-structure evolved into a random recurrent assembly.

strong recurrent connections in the case of LTP-dominated STDP (Fig. 3.22 c, 3.23
b).The evolution of strong recurrent connections can also be found for balanced and
LTD-domianted STDP, where this effect is however not as strong and the FF-structure
is retained (Fig. 3.22 a,b). The replay quality (of the strongly connected neurons) in
terms of the matching index is only slightly enhanced after consolidation , in contrast
to when the network lost most of its strong connections (Fig. 3.24, a) (each additional



3.4 Influence of different parameters on the consolidation dynamics 69

strong connection that drives a neuron changes the spike-timing and therefore perturbes
the order of firing from the perspective of other presynaptic neurons). However, the
probability that a neuron retains at least one strong output and input connection is
greatly enhanced (Fig. 3.24 b,c). Thereby the FF-structure is preserved and most
probably continuous instead of fractured.
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Fig. 3.24: A lower SS learning rate consolidates more synapses but increases the mean
matching index only slightly (a) compared to when fewer synapses are retained strong
(compare Fig. 3.11). The probability distributions for the number of strong input and out-
put connections per neuron (b,c) lets us suggest that the FF-structure no longer fractures
during consolidation.

Introducing intrinsic plasticity to the model

We find that intrinsic plasticity results in the consolidation of most synapses within the
FF-structure. In contrast to the approach of lowering ηSS, the FF-structure is retained
even for LTP-dominated STDP. However, the intrinsic plasticity mechanism impairs
the generation of pronounced ripples (Fig. 3.25). Moreover the matching index is low
compared to previous results without intrinsic plasticity. This makes sense, because a
intrinsic plasticity mechanism biases the correlation between neurons by forcing each
neuron to fire after a certain time interval set by τIP .
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Fig. 3.25: Intrinsic plasticity increases the number of consolidated synapses if the target
rate is not too high but worsens replay and ripple generation. The intrinsic plasticity has
a target firing rate of 5Hz. FF-structures get consolidated at various FF-strengths (a,b,c).
For weak FF-structures however only the strongest synapses consolidate, while the rest
decays to the groundstate (a). The matching index only increases significantly for FF-
structures up to 5nS. For higher FF-strengths, the number of consolidated synapses is
too large to cause significant change compared to the initial state (d). Memory replay is
present (e) but exhibits less pronounced ripples (f).

3.4.6 Consolidation without dendritic spikes

In the absence of dendritic spikes FF-structures consolidate, however in a regime that
is biologically less plausible.

The results from section 3.2.2 showed that consolidation would only be possible
for LTD-dominated or balanced STDO since LTP-dominated STDP does not support
bimodal distributions. We therefore did not study LTP-dominated STDP without
dendritic spikes. Our simulation results show that due to the much reduced SS learning
rate that is needed in order to retain a potentiation regime results in a much slower
convergence rate of the network to a steady state. Consolidation did occur, however,
the regime in which synapses consolidated was at synaptic strengths around 30 − 40nS,
which we would consider rather unrealistic (Fig. 3.26, a-f). Morover, most synapses
did not consolidate but decayed to the groundstate. While this is not directly visible
from figure 3.26, a-f, where simulation time has been 533s, simulating 2000s was
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Fig. 3.26: The network model without dendritic amplification shows slow convergence to
a steady state and unrealistic broad synaptic distributions. Balanced STDP (a,b,c) and
LTD-dominated STP (d,e,f) consolidate a subset of strong synapses for FF-strengths
above 7nS (b,c,e,f). However the consolidated synapses have strengths up to 40nS.
Weaker structures decay to the groundstate (a,d). The matching index is not much im-
proved during consolidation and converges to ≈ 0.3. The network reaches a steady state
only after around 2000s (h). During this consolidation period, the neurons loose most of
their strong inputs (# inputs) (i).

enough for the network to reach a steady state, in which only ≈ 1 strong synapse per
neuron was retained (Fig. 3.26, h,i). Lowering the SS learning rate would probably
result in a larger number of synapses but also at an even higher consolidation regime
above 40nS. Further, the matching index did not change much during consolidation
but converged towards ≈ 0.3 (Fig. 3.26, g) The reason why only roughly 1 strong
synapse per neuron gets consolidated is the same as for the model with dendritic spikes.
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Fig. 3.27: Each additional strong input a neuron receives lowers potentiation per synapse
and up to doubles the postsynaptic activity. The synaptic change has been estimated
via the crosscorrelation function which has been estimated from spiketrain data. We did
simulations for a single postsynaptic neuron and varied the number of presynaptic inputs
from 1 − 6 (synaptic strength were equal for all connections). Dendritic spikes were turned
off. Panel a show the synaptic change for balanced STDP without SS, panel b the ratio
of postsynaptic to presynaptic firing rate depending on the number of inputs and the PSC
amplitude.

Because the upper limit for the synaptic growth is at ≈ 30 − 40nS, PCs are very
strong (> 2nA). The strong PSCs up to double the postsynaptic activity and thereby
significantly increase depression induced by SS (Fig. 3.27). However, lowering ηSS

would result in synapses growing larger than 40nS and increasing ηSS in the deletion of
the FF-structure. Therefore, consolidation of more synapses would better be achieved
via a different SS rule, which has a different dependence of the synaptic strength or the
postsynaptic activity. Alternatively intrinsic plasticity would probably lead to better
consolidation. Both these suggestions have however not been tested in the current
work.

3.5 Summary
1. We found STDP and SS combined are able to drive the synaptic distribution of

a network with dendritic amplification into two distinct, stable regimes, forming
a bimodal weight distribution, which we propose is necessary to retain memories.
In our model this works for FF-structure as well as recurrent assemblies. However,
this consolidation process highly depends on the form of the STDP rule and
and the learning rates of STDP and SS. LTP-dominated STDP e.g. potentiates
connections at high drives, while LTD-dominated STDP depresses connections.
Moreover FF-structures are less stable under LTP-dominated STDP, because high
activity can result in the potentiation of weak synapses and in strong recurrency.
The number of strong synapses per neuron the network retains after consolidation
depends on the exact balance between the learning rates of SS and STDP. High
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SS learning rates lower the number of strong synapses, however significantly
increase the temporal order of spiking for those connections that retain strong.
It should be noted however that this result should not be over-interpreted and
that it is questionable if the used matching index is a good measure to quantify
the quality of memory replay, because it only considers the correlation between
single neuron pairs and not the hole population representing the memory.

2. A network without dendritic amplification is also able to consolidate its memory,
however only if STDP is not LTP-dominated. Further, if connections consol-
idate,the synaptic weights become large, such that they are at the edge of
what is considered biologically plausible. Moreover, most of the strong synaptic
connection are lost.

3. We derived results for STDP and STDP+SS induced change in a single connected
neuron pair over a wide range of input current amplitudes and connection
strengths. We found that the probability of a presynaptic neuron to evoke a
postsynaptic response increases concave with the connection strength and that
therefore STDP induced potentiation increases nonlinear (sigmoidal) with the
synaptic strength. Also, the form of the STDP rule influences how potentiation
changes with the background current. For LTD-dominated STDP, this dependence
is highly concave, while for LTP dominated STDP it is slightly convex.



Chapter 4

STDP: Comparison of analytical
methods and simulations

4.1 Introduction
The motivation for this chapter, while a little bit out of the focus of this works, comes
from two arguments. An analytical solution to a problem gives a clear view on how
different variables/parameter of a system interact to give a certain result. Second, nu-
merical simulations often take much more time than analytical calculations. Therefore,
in order to better understand the dynamics of neural networks it is appropriate to
look for such analytical solutions. The basis for the results in this section come from
Ostojic et al.[78], who derived an expression for the crosscorrelation between two LIF
neurons (Eq. 2.35) in terms of

1. the rate response to a constant input,

2. the autocorrelation function

3. the rate response function (which is the rate response to an oscillating input)

For the rate response function an analytical expression has been derived by Brunel
et al.[18] (methods section 2.5) . While some of the analytical results shown in this
section are reproduced from their work, we here do a more extensive comparison to
simulation results. Analytical solutions to the rate response function are compared
to simulation results over a wide range of osculating current amplitudes. Further
the analytical expression for the inter-spike-interval distribution of a LIF is directly
compared to simulation results, as well as the autocorrelation function for different
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levels of noise σ and input currents I0. At last, analytical results for the STDP induced
synaptic change are compared to simulations, which has not been done before in the
known literature.

4.2 The rate response to a constant input current
and white noise

The simplest input a LIF neuron can receive is a constant background current. Then,
the response is simply given by the differential equation 2.1. In the presence of
Gaussian white noise as additional input, the solution to the Fokker-Planck equation,
describing the evolution of the membrane potential probability distribution, is known
and given by equation 2.41 (Fig. 4.1).

Fig. 4.1: The firing rate r0 of a LIF neuron in response to a constant input current I0
and Gaussian white noise with SD σ.

4.3 The rate response function to an oscillatory in-
put current

We find that the analytical solution in linear approximation to the rate response
functions is in good agreement with simulations if the the amplitude of the oscillating
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input current is not too small nor too strong. We simulated a unconnected population
1 of 1000000 LIF neurons receiving an oscillating input current

Iosc = I1 cos(ωt) , (4.1)

where I1 has been set from 0.5 − 5mV and ω from 1 − 200Hz. Apart from Iosc, the
neuron population received a constant input current I0 = 20.3mV and Gaussian white
noise with σ = 0.5, which drives the neuron population to a firing rate of ≈ 30Hz .
The response of a LIF neuron highly depends on the baseline firing rate r0 and the
background noise the neuron receives [17, 88], simulations have however only been
done for the mentioned noise and input current values (Fig. 4.2 a). The analytical
solutions (Eq.2.42) were done for a baseline firing rate of 30Hz and at different levels
of Gaussian white noise σ = 0.5, 1, 3, 6mV (Fig. 4.2, b). While it has already been
argued in [17] that the linear approximation is only valid for small amplitudes of the
oscillating input current, the linear approximation of the response function has never
been directly compared to results from simulation at different current amplitudes (at
least not to the knowledge of the author). While equation 2.42 that gives the response
in Hz/A does not depend on the the current amplitude, simulations (Fig. 4.2, a) show
that there is a dependency and that the analytical solution (Fig. 4.2, b red curve)
are in approximate agreement with simulations only if I1 ≥ 1.5mV . The assumption
on which the linear approximation of the rate-response function is based is, that the
response of the neuronal population can be approximated by r(t) = r0 + r1 ∗ cos(w ∗ t)
when the input is of the form I(t) = I0 + I1cos(ωt) with I1/I0 being small, but I1 > σ.
We find that for 1.5mV > I1 > 0.5mV = σ, the rate response is overestimated by
the linear approximation. For strong amplitudes, the amplitudes of the resonance
modes are in good agreement with what is found analytically, however the modes
seem to broaden and slightly shift towards higher ω. The response in the firing rate
exhibits resonance effects when the frequency of an oscillating input current is N
times the baseline firing rate r0, where N = 1, 2, 3, .. (Fig. 4.2, a, b). However in
the presence of noise this resonance effect quickly decays for frequencies of the input
higher than 2 ∗ r0 (Fig. 4.2, b Please note that the analytical results have already
been shown in [78] and were reproduced for the current work.) However, we find a
resonance mode at r0/2 (Fig. 4.2 a), which is not predicted by the linear approximation.

1A neuron population has been simulated to be able to more efficiently calculate the ensemble
average, note, the neurons were not connected in a network!
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Fig. 4.2: a: The rate response function of a LIF neuron to oscillatory currents of different
amplitude I1 as a function of the oscillation frequency. The background noise has been
set to σ = 0.5mV . Analytical results from linear response theory are valid for current
amplitudes (I1 ≥ 1.5mV , compare red curve in b). A resonance mode at low ω is found
that is not predicted analytically. The analytical solutions to the rateresponse function
show that the resonance modes found at low background noise fade with increasing noise
(b).

4.4 PISI, Auto-correlation function and the cross-
correlation function

We find that the analytical solutions for the LIF inter-spike-interval (ISI) distribution
(Eq.2.49) which can be calculated from solutions to the Kummer’s differential equation2

2.45 are in excellent agreement with simulations (Fig. 4.3, a). So are the analytical
solutions for the LIF autocorrelation function (Fig. 4.3, b,c) which can be expressed
in terms of the ISI-distribution (Eq.2.47 ).

It should be mentioned however that the accuracy was only present for noise
levels up to 3mV . For higher levels of σ the analytical solution began to differ
from the simulation. The reason for this discrepancy at higher noise levels has not
clearly been identified but probably originates from numerical errors when solving the
Kummer’s differential equation. The equation has been solved numerically instead of
using its solution in form of confluent hyper-geometric functions as it has been found
that common algorithmic implementations that solve the confluent hyper-geometeric
function are less accurate and do not lead to good results.

2Note that we solved Kummer’s differential equation numerically using Eulers method instead of
solving its solution in terms of the confluent hyper-geometric function, because we found this lead to
very different results (This is probably due to the accuracy with which the confluent hyper-geometric
function is solved in the scipy implementation that we used).
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Fig. 4.3: Panel a: Inter-spike interval distribution of a LIF neuron at a mean firing rate
of ≈ 30 Hz for different level σ of the background noise. Analytical results are in very
good agreement with simulations. The distribution broadens with the amount of back-
ground noise, i.e. the neuron fires less regular. Further, the maximum of the distribution
shifts towards smaller inter-spike-intervals. Note that the refractory period is not taken
into account. Panel b: The autocorrelation function of a LIF neuron, driven by different
constant background currents and white noise (σ = 0.5mV ). Analytical results are again
in very good agreement with simulations. The harmonic modes occur at integer multiples
of the baseline firing rate r0 and start to disappear with lower firing rates .Panel c: The
Autocorrelation function of a LIF neuron at a constant firing rate of 30Hz for different
amounts of background noise. The harmonic modes become weaker with the amount of
noise.

PSC

To calculate the crosscorrelation function between two LIF neurons the synaptic
current across a synapse with conductance g0 needs to be defined. As before in the
current work Isyn(t) = g(t)(Esyn − u(t)). Since with the crosscorrelation function, the
ensemble averaged response to a input current is calculated Isyn = g(t)(Esyn − µ) (Fig.
4.4, b), where the effective membrane potential µ has been set to 17mV . To solve the
convolution integral in equation 2.35, the Fourier transform Isyn(f) is determined (Fig.
4.4, b)

Crosscorrelation

The crosscorrelation function can now be expressed as a double convolution integral
of the rate response function (Fig. 4.2) over the input current of a spike and the
autocorrelation function of the presynaptic LIF neuron or equivalently in the frequency
domain by the product of the respective Fourier transforms. Here, the crosscorrelation
function is defined as the factor by which the instantaneous firing rate changes relative
to the baseline firing rate after the inset of a PSC/Spike. The analytical results are
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Fig. 4.4: panel a,b: The synaptic spike current that is evoked whenever a presynaptic
spike occurs. The Fourier transform is used to calculate the convolution integral with the
rate response function (b).

in good agreement with the simulation (Fig. 4.5 ). This has already been verified
in [78] and is just included to show the agreement between the implementation of
the method in this work with [78]. In the next section, the crosscorrelation function
is used to determine the synaptic change for different forms of the standard STDP
learning window over a wide range of pre- and postsynaptic firing rates. The advantage
of calculating the synaptic change from the crosscorrelation function lies in the fact
that once the crosscorrelation function is known, the synaptic change for different
STDP rules can be calculated by a simple integral.
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Fig. 4.5: The analytical crosscorrelation function (red curve) is in good agreement with
simulations (black curve) for large differences in pre- and postsynaptic rate (a) as well
as for similar rates (b). Pre- and postsynaptic neuron both received white noise with
σ = 0.5mV . These results match with those from [78].
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4.5 STDP dependence on the pre- postsynaptic fir-
ing rates

We find that potentiation and depression induced by STDP depend significantly on
the pre- and postsynaptic firing rate (Fig. 4.6). Especially at low noise, properties are
found that are explicitly a result of the autocorrelation function of the LIF neuron
(Fig. 4.6, a-d). Further, analytical results are in very good agreement with simulations
over a wide range of I0 and the noise level σ, however only for low PSC amplitudes
(< 100pA). We studied the following 4 model cases:

• a balanced STDP rule at low noise levels,

• a LTD dominated STDP rule at low noise levels,

• a balanced STDP rule at low noise with direct recurrency,

• a balanced STDP rule at intermediate noise levels.

We chose these cases as they shed light on the dependents to the width of the
STDPs LTP-domain, the noise and the network topology (recurrency). For each of
the above cases, analytical results are compared to simulations. The refractory period
after the spike is not taken into account. The analysis is restricted to the case of a
single neuron pair that receives a constant background current I0 and Gaussian white
noise with a standard deviation σ. No other connections such as inhibitory feedback
are considered (Despite a recurrent connection). The connection strength is set to a
low value of g0 = 1nS which corresponds to a PSC amplitude of approximately 55pA.
At much higher synaptic strengths, the linear approximation will not hold anymore
and the analytical result deviate from simulations (Fig. 4.8). While these cases do not
account for the hole spectrum of synaptic dynamics in the presence of STDP, they
contribute to clearing the view on STDP.

Case 1 (Fig. 4.6, a,b):

In the presence of low background noise (σ = 0.5mV ) and an approximately balanced
STDP rule, STDP induced potentiation displays a sharp maximum when the pre- and
postsynaptic firing rates are close (Fig. 4.6 a,b). Synaptic change in pS/s is highest
at high firing rates, in terms of pS/spike however highest at low firing rates (Fig. 4.7
a). This is explained by the stronger first mode in the crosscorrelation at low rates
compared to high rates (Fig.4.7, c,d).
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Further the maximum of potentiation appears sharper at high firing rates than
at low rates (Fig. 4.7 a). An explanation for this phenomenon can be derived from
examining the autocorrelation function (fig. 4.3, panel b). At higher firing rates, the
auto-correlation function of the LIF neuron shows more and stronger modes at the
N-fold of its mean firing rate (N=1,2,3,...). This means, that the neuron fires more
regular. Therefore, if the two neurons emitted a spike synchronously, the probability
that the next spike is evoked again synchronously is higher when pre- and postsynaptic
neuron share the same high firing rate.
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Fig. 4.7: Panel a: The synaptic change given in nS/Spike as a function of the pre- and
postsynaptic firing rate respectively (τS = 4ms, σ = 0.5mV ). Panel b: When the
presynaptic LIF neuron is exchanged by a poisson spiker, the dependence of the synap-
tic change on the post- and presynaptic firing rate changes, supporting the argument that
the auto-correlation function of the LIF neuron has a major impact of correlation based
synaptic plasticity. Panel c,d: The crosscorrelation function is shown for low and for high
pre- and postsynaptic firing rates. The strong modes at high firing rates (d) are result
from the LIF neurons auto-correlation.
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Phase shifts, perturbing this synchrony, are introduced by noise, while the synaptic
connection between both neurons brings them into phase at the emission of a presy-
naptic spike. To support our argumentation we simulated the same system but with a
Poisson spiker as the presynaptic neuron (a neuron that generates a spiketrain that is
a Poisson process and therefore is not autocorrelated) (4.7, b). We find that in this
case, potentiation is maximal at the highest presynaptic firing rate and an intermediate
postsynaptic rate of ≈ 13Hz. A higher presynaptic rate here just means that there is
a higher chance of evoking a response per second. With increasing postsynaptic firing
rate, this probability however decreases (also see section 3.2.1).

Case 2 (Fig. 4.6, c,d):

When introducing a STDP rule that is LTD dominated, the picture changes. While
in the balanced case, synaptic potentiation was strongest at high post- and presynap-
tic firing rates, here it is strongest at low firing rates and becomes negative at high
firing rates. However, synaptic potentiation is still closer to or greater zero when the
presynaptic rate is close to the postsynaptic rate. The explanation is the same as for
the balanced case. That synaptic growth is strongest at lower rates is explained by
multiple facts. The higher firing rate is induced by a stronger background current,
i.e. spiking occurs mainly due to the background current and less due to presynaptic
spiking. Increasing the presynaptic firing rate to the postsynaptic rate, will not lead to
an equivalent increase in correlation between post-and presynaptic neuron (Fig. 4.7,
d). While this effect is the same for LTP-dominated or balanced STDP, the wider LTP
domain ensures that potentiation occurs even when correlation is low. Further, a wide
LTP window can account for the second modes in the crosscorrelation function at high
rates (fig. 4.7, d).

Case 3 (Fig. 4.6, e,f):

When introducing a direct recurrent connection between a neuron pair, the neuron with
the higher firing rate will always dominate over the one with the lower rate, if both
connections are equally strong, i.e. potentiation occurs only if the presynaptic rate is
higher than the postsynaptic (This effect would become weaker when the recurrent
feedback is delayed). This might explain why in section 3.4.2 the consolidation of the
recurrent assembly led to the evolution of a strictly bimodal matching index distribution.
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Case 4 (Fig. 4.6, g,h):

At increasing levels of noise, the dependence of STDP induced potentiation on the
difference between pre- and postsynaptic rate decreases. This is in agreement with the
argument that this phenomenon is mainly an effect of the LIF neurons auto-correlation
function, which looses its distinct modes at higher noise levels (fig, 4.3, c). That the
picture is still different from the case of a presynaptic Poisson spiker is explained by
the time that the membrane potential needs to recover after the reset. Therefore, the
autocorrelation is not constant even at high noise levels (see also Fig. 4.3 a). Further,
the synaptic change becomes negative at higher pre- and postsynaptic firing rates.
This results from the STDP rule not beeing perfectly odd (Eq. 3.1). Increasing the
level of noise by a factor of 3 lead to a significant decrease in the maximum synaptic
potentiation from 450nS/s to −90nS/s at PSC amplitudes of 55pA (compare Fig. 4.6
a, g). This is in agreement with the outcomes for different noise levels in networks
simulations of section 3.4.3. Therefore, decreasing or increasing the level of noise only
slightly would always demand to adapt the parameters of STDP and synaptic scaling,
since STDP is strongly influenced by the amount of noise and SS is not.
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Fig. 4.8: Analytical solutions for the crosscorrelation function quickly quickly differ from
simulations if the PSC increases. When comparing a,b,c to figure 3.5, panels a,d,g, one
notices that potentiation and depression depend very different on I0 and that high I0 does
not lead to depression for strong PSCs (b). Further, potentiation depends linear on the
PSC and does not follow a sigmoidal functions (c)

At last we want to compare how the analytical solution depends on I0 and the PSC
amplitude in contrast to the simulation results from figure 3.5. Since the amplitude of
the crosscorrelation in linear approximation does depend linear on the PSC amplitude
instead of sigmoidal, the crosscorrelation and thereby potentiation is heavily overes-
timated for large PSCs (Fig. 4.8, c). Further the dependents on I0 is different (Fig.
4.8, b) and only matches the results from simulations approximately for very weak
synapses.
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4.6 Summary
1. We have shown that the methods to calculate the expected synaptic change

induced by STDP, which were presented in section 2.5 and 2.2.2, give estimations
that are in very good agreement with simulations for low PSCs. This has not
been done in the literature so far, using these methods. Further, we derived
unknown properties of STDP such as the exact dependents on the difference
between post- and presynaptic firing rate and were able to explain the findings
through the LIF autocorrelation. This might be important in networks with very
diverse activity, where post- and presynaptic rates differ and fluctuate (which is
the case e.g. in strong FF-structures). Moreover we shed light on the quantitative
and qualitative dependence of STDP on the background noise and the form of
the STDP window for different pre- and postsynaptic activities.

2. In addition we delivered a direct comparison between the available analytical
expressions for LIF rate-response function, inter-spike-interval distribution and
autocorrelation function with simulation results.



Chapter 5

Discussion

Our simulation results show that STDP in combination with SS could be a possible
mechanism that explains some of the experimental findings that have been made in
the hippocampus during sleep and of which some seem contradictory:

1. during SWR in the hippocampus [86], synaptic connections that take part in
SWR are down regulated [71]

2. SWR are accompanied by memory replay [91], [50];

3. sleep enhances memories [63].

These points can be viewed as contradictory because memory enhancement (3.)
seems to contradict with the observation of downscaling (1.) of strong connections
during sleep, if we assume that these strong connections are the representation of a
memory. Moreover, memory replay (2.) implies a higher degree of correlation between
neurons. However, this does not support the hebbian idea that neurons that are
correlated should increase their synaptic strength, i.e. experience potentiation induced
by STDP.

5.1 Stabilizing STDP and homeostatic plasticity
We found that the downscaling during replay activity could be explained by the SS
mechanism, because it depresses connections between neurons, regardless of whether
these neurons are correlated or not. However, SS and STDP have to be carefully bal-
anced, such that a memory does not get lost during the network consolidation process.
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Further, the exact functional shape of STDP plays an important role. If the STDP
rule is LTP dominated, the ff-structure might evolve into a recurrent assembly, while
recurrent assemblies are fragile if STDP is LTD-dominated. The simulation results
suggest that a LTD-dominated STDP rule would be the best option for consolidating
FF-structures, however not necessarily the best for consolidating recurrent assemblies.
In general, FF-structures are less stable as there is always the possibility that strong
recurrent connections evolve, whether it be due to spontaneous activity or due to
directed external sensory stimuli. These recurrent connections could perturb the correct
order of replay. Whether this would result in disturbed memories in ’practice’ is an
open question.

Other theoretical studies:

The problem that hebbian plasticity leads to unstable learning has been adressed in
many studies, however it is still not completely understood how stabilzing mechanisms
are implemented in the brain. In 1982 Bienenstock et al. proposed a model for learning
in the visual cortex with a sliding threshold for LTP and LTD which lead to stable
learning (also known as BCM rule) [12]. Miller and MacKay studied the implications
of constraining hebbian learning via multiplicative and subtractive memechanisms that
counteract LTP [67]. A similar study has been published in the same year by Goodhill
et al. [43] that showed that such artificial weight constraints significantly affect the
neural network dynamics and limit the performance of learning. Another method has
been introduced by van Rossum et al. [108] who showed that stable learning is possible
with a weight-dependent STDP rule. Their results indicate that stable correlation-based
plasticity can be achieved without introducing competition, e.g. through synaptic
scaling, or other multiplicative or subtractive mechanisms. However another study [93],
where a weight dependent STDP rule was fitted to the data from Bi and Poo [85], found
that stabilizing, weight dependent STDP rules lead to slow learning and that increasing
the learning rate leads to rapid forgetting in the presence of realistic background noise.
This is also what Jahnke et al. [49] found, where a similar weight dependent STDP
rule was used that lead to the deletion of FF-structures. In [35], Abbott and Gerstner
showed that homeostatic control of activity and correlation based synaptic change
can both arise from STDP. Another approach to stabilize excitation has been studied
by Fernando et al. [36], who showed that STDP together with short-term plasticity
stabilizes weights in a network receiving Poisson input between 10-40 Hz. A more
recent work [33] studied excitatory STDP and inhibitory STDP in combination with
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homeostatic plasticity in form of synaptic weight normalization. Excitatory STDP was
approximately balanced, inhibitory STDP LTP-dominated. They found that in an
initially homogeneous network, small imbalances in the structure emerge to few driver
neurons with strong excitatory connections. In addition they did simulations with
synaptic scaling instead of synaptic weight normalization and showed that the network
behaved the same, assuming equal mean presynaptic rates and slow time-scales of
plasticity. Note however that this is not the case in the current work, where the firing
rates differ a lot. Exchanging synaptic scaling with weight normalization (which is
independent of the firing rate) would most probably lead to different results.

Experimental work:

Apart from synaptic scaling, there are a number of other proposed mechanisms that
could be responsible for network activity regulation observed experimentally. Such
mechanisms are intrinsic plasticity [28], change in synapse number [57], or metaplastic-
ity that influences the ability to induce synaptic plasticity [2]. There is experimental
evidence for all these mechanisms. However they are not found in all neurons [104] and
only synaptic scaling is associated with altering the receptor content at synapses and
thereby acts as a direct counter mechanism to LTP. However apart from the receptor
number at the postsynaptic site there is evidence for homeostatic mechanisms that alter
the neurotransmitter number and release probability at the presynaptic site [104, 25].
Note however that these different mechanisms are not present in all neuron types and
not always combined [104]. Further it has been suggested that synaptic scaling does
not only globally scale synapses [107] but may act local on synapses [95] or requires
widespread changes in network activity that is not limited to single neurons [104] (In
the current work, SS acted global on all incoming connections of a neuron). However
most experimental studies modify the activity of all neurons in a network and therefore
it is difficult to investigate the role of the individual neuron and to differentiate between
global, local, pre- and postsynaptic mechanisms [104]. In conclusion, how exactly
synaptic scaling and other mechanisms regulate neural excitability has not yet been
completely clarified. This also shows that there is still a lot of theoretical work that can
be done to test how these different homeostatic mechanisms would interact, what role
the presynaptic expression of homeostatic plasticity might play, how different STDP
rules like the symmetric/asymmetric may contribute to this, in what way presynaptic
activity might be important (anti-hebbian learning). Moreover, are STDP and SS
independent mechanisms or are they correlated in some way, what are the underlying
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dynamics of activity dependent receptor trafficking?

Our work has contributed to answering some of these questions by showing the
effects of postsynaptic activity dependent synaptic scaling on stabilizing new memories.
We have shown that such a scaling rule would need to be tightly balanced with STDP in
order to keep the number of strong connections in the required regime. Further we have
shown that intrinsic plasticity could counterbalance the strong activity fluctuations
found in networks with a high diversity of connection-strengths and thereby stabilizes
a larger number of strong connections in combination with SS and STDP. Moreover,
we shed light on the importance of balancing STDP towards LTP or LTD by showing
that this can have a strong impact on the synapse dynamics. However, our model does
not explain activity increases observed in experiments when network activity is low
[104]. In our SS model, the chosen target firing rate of 0, higher target firing rates
however result in the growth of synapses belonging to weakly active neurons, which we
consider as biasing old memories. Moreover, increasing the synaptic coupling between
low active neurons does not necessarily increase their activity if none of the neurons in
the resulting stronger connected assembly gets enough input to drive the other neurons.

5.2 Memory stability and enhancement
The enhancement of memories after sleep (which in the current work is simulated by
the absence of any specific external stimuli), is to a degree also observable in our model.
However we want to emphasize that this statement is very vague. What we found
is, that if the learning rate of SS is high enough, SS introduces a strong competition
between synapses that belong to a certain postsynaptic neuron. Only connections from
presynaptic neurons that have a firing rate close to the postsynaptic neuron consolidate,
the rest decay to the ground-level. The deletion of most of the strong synapses results
in an enhanced temporal order of spiking between neuron pairs that retain their strong
connection. However this goes to the expense of a continuous memory representation.
This again raises some unanswered questions such as, how many neurons or connections
are actually involved in forming a certain memory, must a memory be a continuous
structure or do spatially close cluster that are active on a similar timescales represent a
memory equally well? However, one argument against a possible fragmentation of such
structures is that it comes along with a highly reduced activity after consolidation.
Experiments have shown however, that strong activity of hippocampal neurons in
the form of sharp wave/ripples is retained over long time-periods during sleep and
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doe not decay much even after 3 hours [46]. This would support the hypothesis
that, while synapses might get down-regulated, the majority stays in a regime, where
dendritic spiking is induced and with it ripple-like activity. Memory enhancement may
be better explained by theories of system consolidation [32] or multiple trace theory
[54]. Moreover, our model only explains the synaptic evolution during sleep/ripple-like
activity, where connection strengths get redistributed. However, if the dendritic activity
is shut down, the connections need to be stabilized by other mechanisms. We therefore
suggest that subsequent to this process, synaptic consolidation [30] is needed that leads
to long lasting alterations of synapse proteins and thereby fixes synapses or at least
makes them less accessible to changes. The process of synaptic consolidation might
also be connected to ripple-like activity and replay and therefore goes hand in hand
with the reorganization of synaptic connections we studied in the current work.

5.2.1 Dendritic spikes necessary for network consolidation?

We found that the correlation that is induced between neurons by classical somatic
spikes is not sufficient to enable a clear up and downscaling of connections within a
plausible regime (Fig. 3.4.6), at least if synaptic changes are solely driven by STDP and
SS. Therefore our work would suggest that reducing ripple-like activity by impairing
dendritic amplification would result in a different redistribution of synaptic weights.
Therefore, are SWR always accompanied by dendritic spikes? If yes, how do synapses
change if dendritic spiking is impaired? There has been experimental work that
suggests that dendritic spikes are indeed necessary for the induction of ripples in the
hippocampus [24]. Further, Sadowski et al. [89] showed that the reactivated place
cell firing patterns are able to induce LTP, but only if accompanied by ripple-activity
and resulting dendritic depolarization. This supports our model, where potentiation
only sets in if the dendritic spiking threshold is reached. Moreover, the contradiction
between Sadowskis finding that ripples induce LTP and Norimotos finding [71] that
synapses get downregulated during SWR is in part covered by our model. Sadowski
demonstrated the induction of LTP for synapses that had a strength of ≈ 35pA, which
corresponds to a synaptic conductivity of about 0.65nS. In our model, potentiation
started only for synapses with a synaptic strength > 2nS, which however is set by the
dendritic spiking threshold. A lower dendritic spiking threshold in our model would
result in the potentiation of synapses that lie around 0.65nS. For stronger ff-structures,
we find an average downregulation just as Norimoto.
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5.2.2 Other studies on memory stability

The synaptic stability versus plasticity dilemma [3] has been in the focus of several
studies, addressing the question how memories could be retained in a network while still
being able to encode new memories. Abraham et al. [4] suggested a regulated balance
of synaptic stability and synaptic plasticity is required for optimal memory retention,
criticizing that the ongoing synaptic change does imply that even long encoded memory
could quickly become lost. This is also an important criticism to the current work,
where consolidated synapses heavily rely on the momentary network activity. Slight
changes to the pre- and postsynaptic firing could quickly result in the loss of previously
consolidated synapses. However it is this property that also allows to integrate new
memory into the network. The question is rather, how fast synaptic change should
occur and if synapses that were in the consolidated regime for a long time should be
stabilized in addition by other mechanisms that slow down plasticity (e.g. by making
the learning rate depend on the time a synapse stayed in an upper regime (synaptic
consolidation)). Work that investigates the role of STDP in memory retention has
been done by Billings et all. [13], who showed that a soft-bound, weight-dependent
learning rule has a very short retention time as compared to a learning rule that is
independent of the synaptic weights (related to [108], [93], section 5.1). Theoretical
work on how STDP could stabilize memories by having two stable fixed points has
been done by Wei et al. [110] who studied the effects of ongoing STDP on the stability
of memory patterns stored in synapses of an attractor neural network. In a recent work,
Park et al. investigated weight dependent STDP and showed that, what they called
asymmetric STDP leads to flexible memory that is volatile and easily overwritten,
while symmetric STDP results in stable memory representations. Asymmetric STDP
depends on the synaptic weight such that weak synapses are potentiated (STDP is
LTP-dominated) and strong synapses are depressed (STDP is LTD-dominated). This
rule has already been identified to lead to fast forgetting already by others ([93, 108]).
Symmetric STDP is balanced, however the learning rate is strongest for intermediate
synaptic strengths and decreases when the synaptic strength increases or decreases
from the mid-value. Combining the two STDP rules, they could realized a hybrid
memory type that operates in a way intermediate between stable and flexible memory.

5.3 Unimodal or bimodal synaptic distribution?
Experimental studies [9, 5, 68] have provided evidence that synaptic weights follow
a unimodal, long-tailed distribution which can be approximated by a log-normal dis-
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tribution. So does that mean that memories are stored in unimodal distributions?
Theoretical works [79, 110, 93] (and the current work) suggest that synaptic plasticity
rules that drive synapses into a unimodal distribution do not retain old memories.
Further, [33] showed that their synaptic plasticity model that leads to long-tailed uni-
modal distributions, amplifies small inhomogeneities in the synaptic weight distribution.
While resulting in the experimentally observed unimodal long-tailed distribution, we
propose that such a process would bias old memory representations. So how could our
proposal that only synaptic plasticity that leads to bimodal distributions stabilizes
memory fit into the experimental findings? First, the experimental data does not
consider single memory representations but averages over all synapses, regardless of
their function. In general we assume that the number of strong connections is small
compared to the set of all synaptic connections, as it is the case in the current work.
Therefore, if individual memories are stored in bimodal distributions but with slightly
different shapes, the mean over all of these could look like a unimodal distribution.
Seconds, if the number of strong connections is very low, this could, under high sub-
sampling (which is the case in all experimental studies due to the overwhelming size
of the brain) indeed lead to the observation that synapses are unimodal distributed.
Third, in our model, synapses are initially also distributed in a long tailed unimodal
distribution after training. The bimodal distribution only evolves during consolidation.
Therefore, in a random subsample of synapses that contain consolidated and newly
potentiated synapses that not yet consolidated, a bimodal distribution would again
not be found. However, it might be that there are mechanisms that stabilize synapses
and retain a long tailed unimodal distribution. One candidate could for example be
metaplasticity [2] that slows down synaptic plasticity in synapses associated with older
memories.

5.4 Measures for memory replay
What are good measures for the quality of memory replay activity? In the current
work memory retrieval has been measured in terms of the matching index. But is this
the right way to do it? The replay of memory has been identified as being crucial for
memory consolidation. The disruption of memory replay in the hippocampus during
sleep results in weaker memory, while enhanced replay strengthens memory [11, 10].
Enhanced replay is however often associated with an increased activity of neurons that
encoded information during wake and not necessarily with temporally structured replay.
However, structured replay of sequences that occurred during wake have been observed
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during sleep in the hippocampus [50]. So, how much does the strength of a memory
depend on the overall activity of neurons associated with it and how important is the
temporal structure of the replay. We found that the temporal order of firing, measured
by the matching index, increases significantly for individual neuron pairs, if the total
number of strong inputs the postsynaptic neuron receives decreases. The question is, to
what level does the enhanced order of spiking for single neuron pairs enhance memory
and to what degree is the overall activity of neuron ensembles important for the memory
retrieval? We suggest that there is a sweet spot between the right temporal order
of replay that might be interpreted as the precision of a memory and the magnitude
of activity that might be interpreted as the strength of that memory. However to
shed more light on these questions more experimental studies are needed that look
precisely at how much the connectivity in the hippocampus changes during sleep and
how much this change influences the order and activity of replay. If the temporal
structure of replay enhances during sleep, is this due to the loss of strong connections
or due to the formation of new, enhanced memory traces in the network? Or is the
downregulation that Norimoto observed during ripple-like activity not connected to
the loss of any synapses after all? Further study has to go into how to quantifying
the quality of such replay events. The matching index used in the current work only
accounts for correlations between single neuron pairs, without taking into account the
activity of the other neurons that make up the memory. It might be worth thinking
about alternative measures that include higher order correlations. Moreover one could
try to derive more appropriate measures from information theory. Another attempt
to quantify memory replay in FF-structures that takes into account the population
activity of small assemblies of neurons can be found in [23]. This method however
neglects single neurons pair activity.

5.5 Conclusion
This work has shown that STDP in combination with SS and dendritic amplification
reorganizes synapses within newly formed FF-memory representations. During sponta-
neous, ripple-like activity these memories are stabilized/consolidated as synapses are
transfered into a bimodal distribution. This process however depends on the exact form
of the STDP learning window as well as the timescales/learning-rates of STDP and
SS and is closely linked to the emission of dendritic spikes. We find an average down-
regulation of strong FF-structures in agreement with the downregulation of synapses
during ripple-like activity found in experiment [71]. Moreover our plasticity model
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can be tuned to control the number of synapses that are retained in the consolidated
memory representation, where synapses that belong to neurons with similar activities
are favored. We find that the temporal structure of activity between single neurons
enhances when the overall number of strong synapses within the memory representation
is reduced. However, this also leads to a reduction of activity and therefore to weaker
replay. Further, we showed that STDP depends sigmoidal on the synaptic strength
and that the dependents on the pre- and postsynaptic activity is highly influenced
by the form of the STDP window. We found that LTD-dominated STDP depends
concave, while LTP-dominated STDP depends convex on the firing rate of the pre- and
postsynaptic neuron, which has strong implications in how synapses react to stimuli of
different strengths. At last we studied established methods for estimating the crosscor-
relation function of LIF neurons to calculate the synaptic change induced by STDP
and compared these results to simulations. We found that analytical and simulation
results are in good agreement for weakly coupled neuron pairs. Further we showed that
the LIF neurons autocorrelation impacts how STDP induced potentiation depends
on the pre- and postsynaptic activity and moreover shed light on how background
noise affects STDP. However, there is still a lot of theoretical and experimental work
that has to be done to clarify our understanding about the different homeostatic and
hebbian mechanisms that drive plasticity and may consolidate memory in the brain.
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