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1 Introduction

1.1 The cell environment

Cells are crowded and inhomogeneous. Its components are constantly undergoing transi-

tions between different states via biochemical reactions. They are translocated actively

or via diffusion while their movement is restricted by the shape of cell compartments.

Biomolecules move either in 3d within the cell on a 2d surface within cell membranes.

New proteins are constantly synthesized while others are broken down. Interactions be-

tween molecules drive phase separation and protein aggregation. This list of processes

governing cells could go on. Depending on the research question at hand, we would like

to be able to account for any of these features in a model.

As an example, synaptic plasticity at excitatory synapses is mediated mainly by a

change in AMPA receptor number at the postsynaptic density (PSD) (Fig. 1.1). Of the

different forms of synaptic plasticity that have been discovered, long-term potentiation

(LTP) is the most noted (Fig. 1.2). Therefore, it is of great interest to understand how

AMPARs are trafficked. However, this question is not easily answered as AMPARs have

a multitude of interaction partners which are important for AMPAR targeting.

The transmembrane domain of AMPARs forms a complex with various auxiliary pro-

teins such as Stargazin. These auxiliary proteins interact with scaffolding proteins in the

intracellular space of the postsynapse such as PSD95. In addition, trans-synaptic com-

plexes composed, e.g., of neuroligin and neurexin bind to PS95 and presynaptic proteins

such as N-cadherin are known to interact with AMPARs [Baranovic, 2021, Tanaka et al.,

2012]. The many proteins at synapses result in a crowded environment. In addition, the

synaptic cleft only measures 20-30 nm in width. As such, effects of molecular crowding

are accompanied by geometric restrictions.

As mentioned above, the trafficking of transmembrane proteins such as AMPARs that

move on a 2d surface while inside the membrane is governed also by their interaction

with intracellular scaffolding proteins that move in 3d space such as PSD95. In order to

fully understand AMPAR trafficking we may also want to investigate the behaviour of

the intracellular interaction partners. In a series of experiments, [Zeng et al., 2016, 2018,

2019] have shown that the PSD proteins PSD95, Shank, SynGAP and Homer undergo
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1 Introduction

Fig 1.1. AMPAR trafficking at the synapse. Whereas LTP, LTD but also homeostatic
synaptic plasticity involve many different biomolecular processes, many of them target
at some point the AMPA receptor, which mediates synaptic transmission at excitatory
synapses. The trafficking of AMPARs can be related to various processes such as spine
growth and receptor binding that are depicted in this figure.

liquid-liquid phase separation (LLPS) in vitro, raising the assumption that also in vivo

the PSD may form via a similar mechanism. Indeed, many proteins have been found to

form liquid like condensates and this topic has gained a lot of attention in recent years as

LLPs has many properties that seem to be important for cell functions in that it enables

compartmentalization in the presence of constant protein exchange [Banani et al., 2017].

Indeed, experimental studies have found that the PSD is not entirely rigid but able to

change its structure and composition under control conditions and in response to synaptic

plasticity [Wegner et al., 2018, Bosch et al., 2014, Hruska et al., 2018]. This raises several

questions, e.g, of how stable are PSD condensates, and under what conditions do they

form? Also, how does the interaction with transmembrane proteins shape the composition,

structure and stability of such condensates?

Importantly, erroneous factors that bias LLPS can lead to pathological conditions

via protein aggregation. As such, LLPS might have implications for diseases such as

Alzheimer, ALS, and cancer [Lu et al., 2021, Molliex et al., 2015, Wegmann et al., 2018].

A better understanding of phase separation is therefore of great interest in general as well

as a possible mechanism involved in synaptic transmission and plasticity. The geometric
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1 Introduction

Fig 1.2. Processes involved in synaptic plasticity (long-term potentiation). Long-
term potentiation involves several different processes on different time- and spatial
scales. High frequency stimulation and strong postsynaptic depolarization result in
the influx of Ca2+. Calcium elevation occurs on the ms timescale and occurs locally
in the dendrite and at dendritic spines [Frick et al., 2004]. Subsequently, calcium
ions activate different kinases such as CaMKII, PKC and PKA. CaMKII in particular
is essential for LTP induction. The activation of CaMKII is transient and occurs
locally at the dendritic spine [Lisman et al., 2012, Lee et al., 2009]. The increased
kinase activity triggers many subsequent processes. For example, phosphorylation of
AMPAR subunits, PSD scaffolding proteins and auxiliary proteins such as Stargazin
cause binding of additional AMPARs at the postsynaptic density [Opazo et al., 2012,
Penn et al., 2017, Huganir and Nicoll, 2013, MacGillavry et al., 2011]. In addition,
induction of LTP triggers spine growth, which also depends, among others, on CaMKII
activation, F-actin elevation and cofilin [Fukazawa et al., 2003, Okamoto et al., 2009,
Matsuzaki et al., 2004]. LTP and spine growth are accompanied by enhanced protein
recycling, endocytosis and exocytosis [Park et al., 2004, 2006, Patterson et al., 2010].
Maintenance and expression of late LTP depends on the synthesis of new proteins
[Abraham andWilliams, 2008, Bramham, 2008]. Protein synthesis, actin dynamics and
translocation result in the reorganization and growth of the PSD [Kerr and Blanpied,
2012, Bosch et al., 2014, Meyer et al., 2014, Araki et al., 2015, Hruska et al., 2018].

restrictions at the synaptic cleft are also of great importance for experimental procedures.

Fluorescent labeling of proteins often involve antibodies that can be 10-20 nm in size,

impairing AMPAR movement inside and in the vicinity of the synaptic cleft [Lee et al.,

2017]. However, the effects of crowding and of large probes at the synaptic cleft have not

been investigated apart from [Lee et al., 2017] such that older experimental results may

need to be reevaluated. Computer models could help to better understand these effects

and to better interpret experimental data.

To summarize, their exist several open questions of which here only very few have been

addressed:

1. How is receptor trafficking influenced by different crowded environments, by the

interaction with other molecules and by synapse geometry.
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1 Introduction

2. How do PSD composition and structure influence receptor distributions and vice

versa.

3. Under what conditions do the PSD proteins undergo phase separation and how

stable is the PSD? How is the phase behaviour of the PSD shaped by the interaction

with transmembrane proteins?

4. ...

If we want to understand synaptic transmission and plasticity in more detail, we should

take into account the structure of the PSD, the spine morphology and multivalent protein-

protein interactions and we need to ask how these factor might influence receptor distribu-

tion and trafficking. This becomes important especially in the light of diseases. Synaptic

signaling, neuronal growth etc. are robust also because their exists some redundancy in

protein function. However, sometimes a small bias can result in erroneous functioning.

To understand when and under what conditions these may arise we need to study not

only the single proteins but we need to put these into an environment where they can

interact in large populations. For this, however, we need powerful and especially flexible

tools that can be relatively quickly adapted to target a new research question. In the

following chapter I will introduce PyRID, a new tool for reaction diffusion simulations of

interacting particles.

1.2 Modeling approaches

One big problem that arises not only in terms of modeling synaptic plasticity but for

many cell processes in general are the different time and spatial scales at which these

processes occur as well as the large number of complex molecules involved. A number

of cell processes can be simulated on the required time scale by using simplifications.

Various methods utilizing different approximations have therefore been developed (Fig.

1.3). For example, large signaling pathways can be formulated in terms of systems of

ODEs, also termed reaction rate equations in this setting, or in terms of chemical master

equations which can be solved efficiently using stochastic simulation algorithms such as the

Gillespie SSA [Smolen et al., 2012, Johnson et al., 2021]. However, this approach neglects

most aspects of the cellular environment, e.g. by assuming a well mixed, homogeneous

system. Also, intrinsic time delays are not captured out of the box but can be accounted

for to some degree by a multi-compartment description where molecules hop between

compartments. Therefore, it is often required to add spatial dimensions. This can be

done, using voxel- (3D) or lattice- (2D) based methods, i.e. we solve our chemical master

equation per voxel and simulate diffusion by means of molecules hopping between voxels.

However, the approach does assume that within each voxel the system is well mixed and
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that the voxel size is much larger than the size of the molecules. Therefore, The voxel

based approach is mainly useful for large scale simulations but breaks down for smaller

systems. System scales above µm and on time scales of minutes are feasible. In this regard,

the synapse and sub-synaptic structures such as the PSD have to be considered as small

systems. Similarly, the ODE approach can be extended to partial differential equations

to include spatial dimensions. However, the PDE approach underlies similar limitations

and is not well suited for small scale simulations with just a few hundred molecules. For

models of the synapse and sub-synaptic structures, particle based approaches are therefore

much better suited. A review on the above discussed approaches can also be found in

[Johnson et al., 2021]. There exist many particle-based simulation methods. All atom

molecular dynamics simulations model the system of interest in great detail, however

are not suitable to investigate processes on larger scales, i.e., consisting of hundreds to

thousands of proteins and that take place on a micrometer scale (size of the synapse). As

such, coarse-graining approaches are necessary where groups of atoms are approximated

by single beads. The level of coarse-graining can range from single amino acids to arbitrary

reductions of the polypeptide chain of the proteins [Kmiecik et al., 2016, Dignon et al.,

2019]. Mesoscopic molecular dynamics takes this approach to the extreme and allows

for the simulation of thousands of proteins. Instead of representing proteins per atom or

per amino sequence, each protein is reduced to a minimal representation of its excluded

volume, i.e. an approximation of its average rigid shape, and the interaction sites that are

of interest in a specific scenario, which may be represented by a single particle. Thereby,

in the minimal case, molecules are represented as patchy particles [Espinosa et al., 2019].

Tools by which either of the above approaches can be implemented are, e.g. LAMMPS,

Gromacs or HooMD. Coarse graining is a large field of research itself and many problems

such as defining a proper force field have to be solved. However, a discussion on this

topic is way beyond the scope of this work. A review on coarse grained protein models

can be found ,e.g., in [Kmiecik et al., 2016]. Whereas mesoscopic molecular dynamics

allows for the simulation of the interaction of hundreds of proteins, reaction kinetics are,

however, usually neglected. The particle based reaction diffusion approach simulates the

Brownian dynamics of molecules and also includes stochastic simulation algorithms for

uni- and biomolecular reactions [Kerr et al., 2008, Anderson et al., 2020]. However, most

particle-based reaction diffusion models represent molecules as points and neglect force

fields and pairwise particle interactions. Therefore, whereas this simplification allow for

even larger simulations than the mesoscopic MD approach with 10 thousands of molecules

and time scales on the order of µs − s, it is often unrealistic, especially in crowded

environments. Popular tools for particle-based reaction diffusion simulations are, e.g.,

MCell (CellBlender) and Smoldyn. The only particle-based reaction diffusion simulator
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that accounts for particle interactions via potential energy functions is ReaDDy. However,

ReaDDy does out of the box not support simulations in arbitrary 3D geometries and is

also not well suited for mesoscopic modeling as defined above as it does not support

rigid bead models of molecules. Therefore, I here introduce a new tool named PyRID,

which is a Python based simulator for reaction-diffusion models of interacting particles.

PyRID runs about as fast as ReaDDy, is flexible and modifiable and supports 3D mesh

geometries, surface diffusion, rigid bead models and many types of uni and bimolecular

reactions. A comparison of features between PyRID, ReaDDy, MCell and Smoldyn is

shown in Fig. 1.4.

Fig 1.3. Modeling approaches. Independent of whether one models the individual signaling
pathways or processes such as exocytosis and spine growth, the question of the method
is important. As discussed in the text, all-atom molecular dynamics are in principle
capable of replicating all the processes we are interested in but are by far too computa-
tionally expensive. Such, only simulations on the nm spatial and the ns time-scale are
possible. Therefore, coarse graining and mean field approaches are necessary. These,
however, come at the cost of of neglecting many details. At the extreme, ordinary
differential equations neglect any spatial and stochastic properties and are therefore
suited to model processes on very long time scales. Intermediate approaches such as
particle based reaction diffusion simulations or mesoscopic molecular dynamics are
able to simulate biochemical reactions and molecular interactions by rate based ap-
proaches and coarse grained force fields. Which method to use strongly depends on
the scientific question.
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Features 

Reactions 

Reaction accuracy 

Diffusion 

Molecular structure 

Surfaces 

Interactions 

Boundary Conditions 

Polydispersity 

API 

Modifiability 

PyRID 

@ Very Good (zeroth order, unimolecular, 

bimolecular, arbitrary number of products, 

compartment specific, different reaction paths) 

© Volume: Good (Not exact close to 

boundary, reversible fusion reactions of 

interacting particles do not obey detailed balance) 

© Surface: Good (euclidian distance only) 

© Anisotropic translational and rotaional 

diffusion, integrated diffusion tensors 

calculation 

® Molecules modeled explicitly 

(by interaction potential and 

/or rigid bodies). 

© Arbitrary surfaces 

(triangulated mesh, supports obj. format) 

© Selection of several pair-potentials, 

custom potentials can be added easily. 

@ Periodic, Repulsive, Fixed concentration 

© Efficient simulation of polydisperse system 

by the use of a hierarchical grid data structure 

© Python 

© Excellent (All source code in python, 

little dependencies) 

ReaDDy 

® Very Good (not compartment specific however!) 

® Volume: Very Good (Not exact close to boundary, 

reversible fusion reactions obey detailed balance) 

© Surface: Good (euclidian distance only) 

© Isotropic translational diffusion 

© Molecules modeled explicitly 

(only by interaction potential). 

© Only via external potentials (Box and Sphere) 

® Selection of 4 potentials, custom potentials 

require altering C++ source code. 

© Periodic, Repulsive 

@ Polydisperse systems result in performance drop. 

© Python 

© Ok (Requires changing C++ source code) 

MCell 

© Excellent (Integration with BioNetGen) 

© Volume: Very Good, 

© Surface: Very Good 

© Isotropic translational diffusion 

@ Indirectly by internal state 

variables (only point particles). 

© Arbitrary surfaces 

triangulated mesh, blender interface) 

© No Interactions 

@ Periodic, Repulsive, Fixed concentration 

Does not apply 

© Blender GUI, Python 

© Ok (Requires changing C++ source code) 

Smoldyn 

© Excellent (Integration with BioNetGen) 

© Volume: Very Good, 

© Surface: Very Good 

© Anisotropic translational diffusion 

@ Indirectly by internal state variables 

(spherical particle approximation). 

© Arbitrary surfaces (6 elementary shapes, 

custom format) 

e/ © Excluded volume approximation for spheres. 

@ Periodic, Repulsive, Fixed concentration 

Does not apply 

@ Python, Text based 

© Ok (Requires changing C++ source code, 

Libsmoldyn API)

Fig 1.4. Feature comparison. Please note that this feature comparison is not complete and biased towards PyRID as only the main
features of PyRID are compared to the other tools. Each of the tools mentioned here have some unique abilities and features that
are not necessarily supported by the other tools or PyRID. However, to do an all-encompassing comparison would go beyond the
scope of this work.
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2 Theory and Methods

In this section, I will introduce and discuss the main methods used in PyRID. I start in

section 2.1 by introducing the scheme by which bead molecules are represented. Followed

by the derivation of an algorithm for the propagation of translational and predominantly

rotational diffusion. The rotational and translational mobility tensors dictate the trans-

lational and rotational motion of anisotropic rigid bodies. Therefore, in section 2.3 I

outline the calculation of the mobility tensors based on a modified Oseen tensor [Car-

rasco and de la Torre, 1999a]. One of the main features of PyRID that distinguishes

it from other molecular dynamics tools such as LAMMPS, Gromacs and HooMD is the

ability to simulate arbitrary unimolecular and bimolecular reactions using stochastic sim-

ulation algorithms. In section 2.7 I describe how these reactions are evaluated in PyRID.

Another notable feature of PyRID is its ability to restrict the motion of molecules to

complex compartment geometries represented by triangulated meshes. Section 2.5 gives

a brief overview of how compartment collisions and surface diffusion are handled. The

remainder of this chapter discusses some additional methods and algorithms: Distribution

of molecules in mesh volumes and on surfaces, fast data structures for molecular dynamics

simulations, fixed concentration boundary conditions and barostat/pressure calculation

for rigid bead model systems.

2.1 Rigid bead molecules

Proteins and other molecules are not point like particles. Especially the interactions be-

tween proteins are not accurately described by isotropic energy potentials. Instead, the

physical properties of bio-molecular systems emerge from an-isotropic multivalent inter-

actions [Dignon et al., 2018, Espinosa et al., 2019]. Protein-protein interaction can be

accurately simulated in all-atom molecular dynamics simulations. However, even modern

computers and algorithms are not efficient enough to simulate systems with more than a

few molecules on time scales relevant for processes such as protein assembly and LLPS.

Therefore, coarse graining methods are needed [Tozzini, 2005]. Rigid bead models are a

method of minimal coarse graining that have some important benefits. Strong and short

ranged interactions between atoms are replaced by a rigid bead topology. This allows

9



2 Theory and Methods

for integration time steps several orders larger than in all-atom simulations when atoms

within the molecule are held together by an energy potential. Usually, the beads of a rigid

bead model do not represent single atoms but pattern the geometry of the molecule of

interest [de la Torre, 2001], significantly reducing the overall number of particles that need

to be simulated. In addition, experimentally or theoretically estimated diffusion tensors

can be used to accurately describe the diffusive motion of molecules. Importantly, multi-

valent protein-protein interactions can be described by patches located on the bead model

surface. On the downside, the properties of coarse grained model systems strongly depend

on the choice of interaction potentials and other model parameters. The estimation of

these model parameters is fairly involved and is out of the scope of this work.

The position of each bead i of molecule j can be characterized by

Ri(t) = Rlocal
i (t) + RO

j (t) (2.1)

where

Rlocal
i (t) = Aj(t) ·X local

i . (2.2)

Here X local
i are the coordinates of bead i in the local reference frame, and A(t) and

RO
j (t) are the rotation matrix and center of diffusion of molecule j in the lab reference

frame respectively. The center of diffusion propagates in response to external forces

F (t) exerted, e.g., by particle-particle interactions or an external force field, and due to

hydrodynamic interactions and collisions of the beads with solvent molecules (Brownian

motion). Thereby, the total force F (t) acting on the molecules’ center of diffusion is the

sum of all forces f i(t) acting on the individual beads:

F (t) =

Nbeads∑
i=1

.f i(t), (2.3)

where Nbeads is the total number of beads contained in the molecule.

2.2 Propagation of translational and angular motion

The motion of an isolated rigid bead molecule j in solution can be described in terms of

the Langevin equation for translational and rotational motion. Note that we are always

considering isolated molecules in dispersion and do not account for the hydrodynamic

interaction between molecules as this is computationally very expensive (O(N2)−O(N3))

[Geyer and Winter, 2009, D lugosz and Trylska, 2011]. In the most general case the

Langevin equation for translational and rotational motion reads [Ermak and McCammon,
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2 Theory and Methods

1978, Dickinson et al., 1985, Jones and Pusey, 1991]:

m
d2rj(t)

dt2
= F j −

(
Ξttdrj

dt
+ Ξtr

dϕj

dt

)
+ Rt (2.4)

d

dt

(
I
dϕj(t)

dt

)
= T j −

(
Ξrr

dϕj

dt
+ Ξrtdrj

dt

)
+ Rr, (2.5)

where rj(t) is the position of the molecule center and ϕj(t) the rotation angle. F j is the

total force exerted on molecule j and T j is the torque. Rt and Rr describe the random,

erratic movement of the molecule due to collisions with the solvent molecules where

⟨Ra(t)⟩ = 0 (2.6)

⟨Ra(t)Rb(t′)⟩ = 2kBTΞ
ab
ij δ(t− t′), (2.7)

with a, b ∈ {t, r}. Here, Ξtt,Ξrr,Ξtr,Ξrt are the translational, rotational and translation-

rotation coupling friction tensors of the rigid body in the lab frame. Also, Ξab =

kBT (D−1)ab (Einstein relation). Due to the translation-rotation coupling, the equa-

tions for rotation and translation are not independent. For low-mass particles, such as

molecules, and for long enough time intervals, the acceleration of the molecules can be

neglected in the description of the diffusion process. As such it is convenient to describe

the motion of molecules by overdamped Langevin dynamics also called Brownian motion

where I
d2ϕj(t)

dt2
= m

d2xj(t)

dt2
= 0:

drj(t)

dt
= M tt

j F j + M tr
j T j + St (2.8)

dϕj(t)

dt
= M rr

j T j + M rt
j F j + Sr. (2.9)

with

⟨Sa(t)⟩ = 0 (2.10)

⟨Sa(t)Sb(t′)⟩ = 2kBTM
ab
ij δ(t− t′), (2.11)

where M tt,M rr,M tr,M rt are the translational, rotational and translation-rotation

coupling mobility tensors of the rigid body in the lab frame and M ab = Dab

kBT
. Also M rt =

M tr,T . In most cases, the effect of the translation-rotation coupling on the molecular

dynamics is negligible. However, translation-rotation coupling increases the complexity

of the propagation algorithm for the translation and rotation vectors. Therefore, in the

11



2 Theory and Methods

following, we will consider translation and rotation as being independent. In this case, the

propagator for the Cartesian coordinates as well as the orientation angle can be formulated

as [Ilie et al., 2015]

rj(t) = rj(t− ∆t) + AjM
tt,b
j AT

j F j∆t + Aj

√
2M tt,b

j kBT W t(∆t) (2.12)

ϕj(t) = ϕj(t− ∆t) + AjM
rr,b
j AT

j T j∆t + Aj

√
2M rr,b

j kBT W r(∆t). (2.13)

Here, W (∆t) is a 3-dimensional Wiener process, i.e. W (t + ∆t) −W (t) ∼ N (0,∆t),

which can be argued from the central limit theorem and the assumption that the forces

of the solvent molecules act with equal probability from all directions. The superscript b

indicates that the mobility tensors M ab,b are given in terms of the body/local frame of the

molecule, which is much more convenient when we talk about the propagation algorithm.

In this context, Aj is the rotation matrix of molecule j. One problem with the rotational

equation of motion is that several issues arise depending on how rotations are represented.

Propagating the rotation in terms of Euler angles, e.g., will result in numerical drift and

singularities [Baraff, 2001, Ilie et al., 2016]. Therefore, especially in computer graphics, it

is standard to represent rotations in unit quaternions, which is much more stable and has

fewer issues in general. An algorithm for the rotation propagator based on quaternions

can, for example, be found in [Ilie et al., 2015]. In the following, I will introduce a more

concise derivation of the very same algorithm.

2.2.1 Quaternion propagator

The orientation/rotation of the molecule can be described by a unit quaternion q = q0 +

i q1+j q2+k q3 where q2 =
∑3

i=0 q
2
i = 1. Quaternions can be thought of as an extension to

complex numbers and were introduced in 1844 by Sir William Rowan Hamilton [Hamilton,

1844]. The rotation quaternion q(t) propagates in response to the torque T i(t) = F i(t)×
rij exerted by the external forces, where rij is the distance vector between bead i and

the center of diffusion of molecule j. The rotation matrix can be represented in terms of

rotation quaternions by [Baraff, 2001]:

A =

1 − 2(q22 + q23) 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) 1 − 2(q21 + q23) 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) 1 − 2(q21 + q22)

 , (2.14)

The goal is to derive a propagator for the rotation quaternion. A well-established

connection between the angular velocity and the unit quaternion velocity is [Baraff, 2001]:

12
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dq

dt
=

1

2

dϕ

dt
q = B

dϕ

dt
(2.15)

where

B =
1

2


−q1 −q2 −q3

q0 q3 −q2

−q3 q0 q1

q2 −q1 q0

 . (2.16)

Inserting 2.13 into 2.15, we get:

qj(t) = qj(t− ∆t) + BjAjM
rr,b
j AT

j T j∆t + BjAj

√
2M rr,b

j kBT W r(∆t). (2.17)

The factor BA can, however, be simplified:

BA =
1

2


−q1 −q2 −q3

q0 q3 −q2

−q3 q0 q1

q2 −q1 q0


1 − 2(q22 + q23) 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) 1 − 2(q21 + q23) 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) 1 − 2(q21 + q22)



=
1

2


−q1 −q2 −q3

q0 q3(1 − 2q2) q2(2q
2 − 1)

q3(2q
2 − 1) q0 q1(1 − 2q2)

q2(1 − 2q2) q1(2q
2 − 1) q0



=
1

2


−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0

 ,

(2.18)

where q2 = q20+q21+q22+q23 = 1. For the quaternion to accurately represent the rotation,

we need to ensure that it keeps its unit length. However, due to the finite time step in

simulations, the quaternion will diverge from unit length over time. Thus, it is necessary

to frequently re-normalize the quaternion. Ilie et al. [2015] point out that re-normalization

will introduce a bias by changing the sampled phase space distribution. Thereby, it is more

appropriate to introduce a constraint force using the method of undetermined Lagrange

multipliers as is used in molecular dynamics algorithms such as SHAKE. However, for

13
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integration time steps used in practice, I found the error introduced by re-normalization

to be negligible. Validation of the above algorithms are presented in section 3.1.

2.3 Mobility tensor for rigid bead models

In order simulate the motion of molecules with the algorithms introduced above, we need

to calculate the molecule’s diffusion tensor. Diffusion tensors have also been estimated ex-

perimentally [Niethammer et al., 2006] or using molecular dynamics simulations [Chevrot

et al., 2013]. However, for many proteins, the diffusion tensor is unknown. Therefore, it

would often be more convenient to calculate the diffusion tensor directly from the coarse-

grained representation of a molecule in terms of the rigid bead model. Pioneering work in

this direction has been done by Bloomfield et al. [1967] and Torre and Bloomfield [1977a].

In the following I will only present the main results that are needed for the calculation

of the rigid bead model diffusion tensor. For the interested reader, a more in depth

introduction can be found in 5.1 Appendix A.

In general, the mobility and/or diffusion tensor of an anisotropic rigid body can be

calculated from the inverse of the rigid body’s friction supermatrix [Carrasco and de la

Torre, 1999a]: (
M tt M tr,T

M rt M rr

)
=

1

kBT

(
Dtt Dtr,T

Drt Drr

)
=

(
Ξtt Ξtr,T

Ξrt Ξrr

)−1

. (2.19)

Therefore, the main challenge lies in deriving an expression for the translational, rota-

tional and translation-rotation coupling tensors of the friction super matrix Ξtt,Ξrr,Ξtr =

Ξrt,T . PyRID uses a method based on a modified Oseen tensor [Torre and Bloomfield,

1977a, Carrasco and de la Torre, 1999a] to account for the hydrodynamic interaction be-

tween the beads of a rigid bead molecule in a first order approximation [Carrasco and

de la Torre, 1999b]. For a rigid molecule consisting of N different beads, the friction

tensors read
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Ξtt =
N∑
i=1

N∑
j=1

ξttij

Ξtr
O =

N∑
i=1

N∑
j=1

(−ξttij ·Aj + ξtrij)

Ξrt
O =

N∑
i=1

N∑
j=1

(Aj · ξttij + ξrtij)

Ξrr
O =

N∑
i=1

N∑
j=1

(ξrrij − ξrtij ·Aj + Ai · ξtrij −Ai · ξttijAj)

. (2.20)

Here A is given by

Ai =

 0 −zi yi

zi 0 −xi

−yi xi 0

 (2.21)

with ri = xiex + yiey + ziez being the position vector of bead i in the molecule’s local

reference frame. ξab, a, b ∈ {t, r} are the translational, rotational and translation-rotation

coupling friction tensors of the system of N freely diffusing beads. ξ, are calculated from

the inverse of the mobility supermatrix [Carrasco and de la Torre, 1999b]:(
ξtt ξtr

ξrt ξrr

)
=

(
µtt µtr

µrt µrr

)−1

(2.22)

Here ξab are of dimension (3Nx3N), forming the friction supermatrix of dimension

(6N,6N). µab are the (3Nx3N) dimensional elements of the mobility supermatrix. The

translational mobility tensor µtt for a system of different sized beads is, in first order

approximation, given by [Carrasco and de la Torre, 1999b]:

µtt
ij =δij(6πη0σi)

−1I + (1 − δij)(8πη0r
−1
ij )(I + P ij)

+ (8πη0r
−3
ij )(σ2

i + σ2
j )(I − 3P ij),

(2.23)

where P ij =
(
I + r⊗r

r2

)
, η0 is the fluid viscosity and rij is the distance vector between

bead i and bead j. I is the identity matrix. The mobility tensor for rotation, however, not

accounting for the bead radii in the hydrodynamic interaction term, is given by [Carrasco

and de la Torre, 1999b]:
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µrr
ij =δij(8πη0σ

3
i )−1I

+ (1 − δij)(16πη0r
3
ij)

−1(3P ij − I).
(2.24)

In this formulation, there is still a correction for the bead radii missing. This correction

consists of adding 6η0VmI to the diagonal components of the rotational friction tensor

Ξrr
O , where Vm is the total volume of the rigid bead molecule [de la Torre and Rodes, 1983,

Carrasco and de la Torre, 1999b]. The rotation-translation coupling is given by [Carrasco

and de la Torre, 1999b]:

µrt
ij = (1 − δij)(8πη0r

2
ij)

−1ϵr̂ij, (2.25)

where ϵ is the Levi-Civita symbol with [de la Torre et al., 2007]

ϵ · rij =

 0 zij −yij

−zij 0 xij

yij −xij 0

 . (2.26)

µtt,µrr,µrt describe the mobility of a multi-sphere system with hydrodynamic inter-

actions. From the above follows that we need to calculate the inverse of a superma-

trix twice, once in equation 5.11 and once in equation 2.20. A super Matrix M =

[[M 1,M 2], [M 3,M 4]] is invertible, if both the diagonal blocks, M 1 and M 4 are invert-

ible The inverse of a (2x2) supermatrix can be calculated by [Varadarajan, 2004], [Deligne

and Morgan, 1996]:

T 1 = (M 1 −M 2M
−1
4 M 3)

−1

T 2 = −M−1
1 M 2(M 4 −M 3M

−1
1 M 2)

−1

T 3 = −M−1
4 M 3(M 1 −M 2M

−1
4 M 3)

−1

T 4 = (M 4 −M 3M
−1
1 M 2)

−1

(2.27)

2.4 Center of Diffusion

One problem that arises with the above description is that we have not yet formulated

an expression for the center of diffusion of the rigid bead molecule. For a rigid body

immersed in a fluid, the force and torque act at the body’s center of diffusion [Harvey

and de la Torre, 1980], which, in general, is different from the center of mass except for

spherically symmetric molecules. The center of diffusion can, however, be calculated from

a diffusion tensor referring to an arbitrary origin by [Carrasco and de la Torre, 1999a]
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rOD =

xOD

yOD

zOD



=

Dyy
rr + Dzz

rr −Dxy
rr −Dxz

rr

−Dxy
rr Dxx

rr + Dzz
rr −Dyz

rr

−Dxz
rr −Dyz

rr Dyy
rr + Dxx

rr


−1Dzy

tr −Dyz
tr

Dxz
tr −Dzx

tr

Dyx
tr −Dxy

tr


. (2.28)

2.5 Compartments

Compartmentalization plays an important role in cell processes. Therefore, we would like

to be able to restrict diffusion and reactions to the volume and surface of arbitrarily shaped

compartments. There exist different methods to restrict the motion of particles to a

confined region. One option is to pattern the boundary of the compartment with particles

such that they interact with the particle inside the compartment via a repulsive interaction

potential. This method, however, has several downsides. On the one hand, one needs

many particles to pattern the surface, which makes this method highly inefficient. On

the other hand this method does not support surface diffusion in a straight forward way.

Another approach would be to add external potentials/force fields that restrict the motion

of particles either to the volume or the surface of a compartment. This method is used in

ReaDDy [Hoffmann et al., 2019]. However, complex geometries/compartment shapes are

more difficult to establish. A third approach is to represent the compartment geometry by

triangulated meshes as is done, e.g. in MCell [Kerr et al., 2008]. This approach has several

benefits over alternative approaches, such as representing compartments by force fields or

other particles. Triangulated meshes are heavily used in computer graphics. Therefore, a

large number of highly optimized algorithms exist. Also, triangulated meshes are very well

suited to represent complex compartment geometries. In the following, I will introduce

how PyRID handles surface diffusion and collisions of particles with compartment surfaces.

2.5.1 Triangulated meshes

A triangulated mesh surface is described by a set of N vertices. These vertices are

combined to sets of n vertices that form the mesh faces. In our case, each face is a

triangle (n = 3) determined by three vertices pi,pj and pk. The order in which these

vertices are sorted per triangle determines the orientation of the triangle normal vector.

The normal vector of the triangle plane is given by n = (p1 − p0) × (p2 − p0). In the

following, I will write the three vertices of a triangle as p0,p1 and p2 and vertices are
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always sorted in counter clockwise order (Fig. 2.1 B). Thereby, the normal vector of a

triangle points outside the mesh compartment. In PyRID, a compartment is defined by

a triangulated manifold mesh, which is a mesh without holes and disconnected vertices

or edges, i.e. it has no gaps and separates the space on the inside of the compartment

from the space outside [Shirley et al., 2009]. As one vertex is shared by at minimum three

triangles it is most convenient to store meshes in a shared vertex mesh data structure

[Shirley et al., 2009] where an array with all vertex position vectors is kept as well as an

array holding for each triangle the indices of the three vertices that make up the triangle

(Fig. 2.1 A).

2.5.2 Volume molecules

The collision response of a molecule with the mesh is calculated in two different ways. For

large rigid bead molecules, each triangle exerts a repulsive force on the individual beads;

for small, isotropic molecules or atoms, a ray tracing algorithm is used.

Contact forces

Contact detection generally consists of two phases, 1) neighbor searching and 2) contact

resolution. Contact detection and update of contact forces can become fairly involved,

depending on the required accuracy, the surface complexity, the type of geometries in-

volved, and whether frictional forces need to be accounted for. Contact resolution of the

more complex type is found primarily in discrete element method simulations [Hu et al.,

2013]. Here, however, we will not require exact accuracy but instead use a simple but,

as I think, sufficiently accurate approach. A bead i is said to be in contact with a mesh

element j (which can be a vertex, edge, or face) if the minimum distance rij is smaller

than the bead radius. In this case, a repulsive force is exerted on the bead:

Uwall,i =
N∑
j

k

2
(rij − d)2Ωij. (2.29)

, where k is the force constant, d is the bead radius, and N is the number of faces that

are in contact with bead i. In general, Ωij accounts for the amount of overlap of bead i

with mesh face j. However, calculation of Ωij is computationally expensive. Therefore,

we here use a simple approximation Ωij = 1/N with N = |F| where F is the set of all

faces the bead is in contact with. Thereby, we assume that the bead overlaps by the

same amount with each mesh element and only account for overlaps with faces as valid

contacts but not edges or vertices. If F = ∅, only the distance to the closest mesh element

is used to calculate the repulsive force, which in this case is either an edge or a vertex.
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To calculate the distance between the bead and a triangle, PyRID uses the ”Point to

Triangle” algorithm by Eberly [2001].

Ray tracing

Contact force calculations are disadvantageous for small, spherical molecules because they

require a very small integration time step. Here, ray tracing is more convenient as it works

independently of the chosen integration time step. In this approach, which is similar to

the contact detection used in MCell Kerr et al. [2008], the displacement vector ∆R of the

molecule is traced through the simulation volume and collisions with the compartment

boundary (the mesh) are resolved via reflection.

∆Rrefl = ∆R− 2(∆R · n̂)n̂, (2.30)

where n̂ is the normal vector of the triangle face. Collision tests are done using the

”Fast Voxel Traversal Algorithm for Ray Tracing” introduced by Amanatides and Woo

[1987].

2.5.3 Surface molecules

Surface molecules laterally diffuse within the mesh surface and can represent any trans-

membrane molecules such as receptors. Here, I take a similar approach to MCell. Thereby,

a molecule diffuses in the plane of a triangle until it crosses a triangle edge. In this case,

the molecule’s displacement vector ∆R is advanced until that edge and then rotated into

the plane of the neighboring triangle where the rotation axis is given by the shared trian-

gle edge. Thereby, the molecule will move in a strait line on the mesh surface (Figure 2.1

C-E). This method is equivalent to unfolding the triangles over the shared edge such that

they end up in a common tangent space, i.e. such that they are co-planar, advancing the

position vector, and folding/rotating back. From the latter method it becomes intuitively

clear that the molecule will indeed move in a straight line on the mesh surface. In the

following I will introduce the details of the method sketched above.

Surface ray marching

First, we need to be able to detect if a triangle edge has been crossed, and to which

neighbouring triangle this edge belongs. Therefore, in addition to the triangle and vertex

data, for each triangle, the vertex indices of the three triangle edges are kept in an array

(Fig. 2.1A). Edges are sorted in counter clockwise order. Also, for each of the three edges

the index of the corresponding neighbouring triangle is kept in a separate array for fast

lookup (Fig. 2.1A).
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Fig 2.1. Mesh compartments and surface molecules. (A) PyRID uses triangulated
meshes to represent compartments. These are kept in a shared vertex mesh data
structure (top left, right) [Shirley et al., 2009]. In addition, for neighbour search, two
array that hold for each triangle the vertex indices of the three triangle edges and
the triangle indices of the three triangle neighbours are used. (A) Triangle vertices
belonging to a triangle are ordered counterclockwise, as are edges. For in triangle and
edge intersection tests barycentric triangle coordinates are used. (A) Visualization
of mesh surface ray marching. If a molecule (green sphere) crosses a triangle edge,
its displacement vector is advanced to the corresponding edge and then rotated into
the plane of the neighboring triangle. D,E By the ray marching method described in
the text, molecules follow a geodesic paths on the mesh surface. F The mean squared
displacement of diffusing surface molecules is in agreement with theory.

The triangle edge intersection test can be made efficient by the use of barycentric

coordinates. Let p0,p1,p2 be the three vertices of a triangle. Also, the vertices are

numbered in counter clockwise order and the triangle origin is at p0. Then, the center of

the molecule R0 can be described in barycentric coordinates by

R0 = p0 + u(p1 − p0) + v(p2 − p0), (2.31)

and the molecule displacement vector by

∆R = du(p1 − p0) + dv(p2 − p0), (2.32)

Efficient algorithms to compute the barycentric coordinates u and v can, e.g., be found

in [Ericson, 2004]. The triangle edges are sorted in counter clockwise order, starting from
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the triangle origin p0. As such, we are on the line p0 + u(p1 − p0) (edge 0) if v = 0, on

the line p0 + v(p2 − p0) (edge 2) if u = 0 and on the line up1 + vp2 (edge 1) if u+ v = 1.

Thereby, the edge intersection test comes down to solving

u + t1 · du = 0

v + t0 · dv = 0

(u + t2 · du) + (v + t2 · dv) = 1,

(2.33)

where ti with i ∈ {0, 1, 2} is the distances to the respective edge i along the displacement

vector. We find that the intersections occur at

t1 = − u

du
(edge 1)

t0 = − v

dv
(edge 0)

t2 =
1 − u− v

du + dv
(edge 2).

(2.34)

To determine with which edge R+∆R intersects first, we simply need to check for the

smallest positive value of ti. Afterward, we advance R to the intersecting edge, reduce ∆R

by the corresponding distance traveled and transform R to the local coordinate frame of

the neighboring triangle. At last, ∆R is rotated into the plane of the neighboring triangle.

This can be done efficiently using Rodrigues’ rotation formula

∆Rrot = ∆R cos(ϕ) + (an × ∆R) sin(ϕ) + an(an · ∆R)(1 − cos(ϕ)), (2.35)

where

cos(ϕ) =
n̂1 · n̂2

|n̂1||n̂2|

sin(ϕ) =
n̂1 × n̂2

|n̂1||n̂2|

. (2.36)

Here, n̂1 and n̂2 are the normal vectors of the two neighboring triangles. As PyRID

supports anisotropic rigid bead molecules, the orientation of the molecule needs to be

updated as well for each triangle that is crossed. It is not sufficient, however, to rotate the

molecule only after it has reached its final position, because the final orientation depends

on the exact path that is taken (in case multiple triangles are crossed) and not only on the

normal vector/orientation of the target triangle plane. The rotation quaternion is given
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by:

q = cos(ϕ/2) + an sin(ϕ/2), (2.37)

where sin(ϕ/2) and cos(ϕ/2) can be calculated from the half-angle formulas for sine and

cosine such that the cos(ϕ) and sin(ϕ) that were calculated to rotate ∆R can be reused.

The molecule’s orientation quaternion is than propagated by quaternion multiplication.

The procedure is stopped if R0 + ∆R end up inside the triangle the molecule is currently

located on, i.e. if 0 <= u <= 1, 0 <= v <= 1, u + v <= 1.

Integrating the equation of motion

Because in PyRID the mobility of each molecule is described by the mobility tensor in the

local frame instead of a scalar mobility coefficient, integrating the equation of motion for

surface molecules becomes straight forward. Here, we can simply skip the z components

in the integration scheme (Eqs.2.12, 2.17). Otherwise, we would need to calculate the

tangent external and Brownian force vectors.

2.6 Boundary Conditions

PyRID supports three kinds of boundary conditions:

1. Periodic,

2. repulsive and

3. fixed concentration boundary conditions.

Repulsive boundary conditions are handled either by a repulsive interaction potential or

via ray tracing, depending on the molecule type (see section 2.5.2). For periodic boundary

conditions, the minimal image convention is applied (Fig. 3.3 C). Thereby, each particle

only interacts with the closest image of the other particles in the system. Note, however,

that the box size must not become too small, otherwise particles start to interact with

themselves. As periodic and repulsive boundary conditions are very common, I will, in

the following only introduce the fixed concentration boundary conditions in more detail,

which is a feature unique to PyRID.

2.6.1 Fixed concentration boundary conditions

Fixed concentration boundary conditions couple the simulation box to a particle bath.

Thereby, we can simulate, e.g., a sub-region within a larger system without the need to

simulate the dynamics of the molecules outside simulation box directly. Instead, molecules
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that are outside the simulation box are treated as ’virtual’ molecules that only become

part of the simulation if they cross the simulation box border. In PyRID it is possible

to have mesh compartments intersect with the simulation box boundary. Molecules then

enter and exit the simulation across the intersection surface or the intersection line in the

case of surface molecules.

Each iteration of a simulation, the expected number of hits between a molecule type

and simulation box borders are calculated. The number of hits depends on the outside

concentration of the molecule, the diffusion coefficient and the border surface area. The

average number of volume molecules that hit a boundary of area A from one side within

a time step ∆t can be calculated from the molecule concentration C and the average

distance a diffusing molecule travels normal to a plane ln within ∆t [Kerr et al., 2008]:

Nhits =
Aln
2C

, (2.38)

where

ln =

√
4D∆t

π
. (2.39)

Here D = Tr(Dtt,b)/3 is the scalar translational diffusion coefficient. For surface

molecules D = Tr(Dtt,b
xy )/2 and

Nhits =
Lln
2C

, (2.40)

where L is the length of the boundary edge. The boundary crossing of molecules can be

described as a Poisson process. As such, the number of molecules that cross the boundary

each time step is drawn from a Poisson distribution with a rate Nhits.

The normalized distance that a crossing molecule ends up away from the plane/boundary

follows distribution [Kerr et al., 2008]:

P (dx̃) = 1 − e−dx̃2

+
√
π ∗ dx ∗ erfc(dx̃) (2.41)

The distance vector normal to the plane after the crossing can then be calculated

from the diffusion length constant λ and the plane’s normal vector n̂ by dx = λ dx̃ n̂ =√
4Dt dx̃ n̂.

In the case that a molecule enters the simulation box close to another boundary, e.g.

of a mesh compartment, we may also want to account for the distance traveled parallel to

the plane in order to correctly resolve collision with the mesh. However, currently PyRID

does not account for this. For small integration time steps and meshes that are further

than
√

4Dt away from the simulation box border, the error introduced should, however,
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be negligible.

Now that the number of molecules and their distance away from the plane are deter-

mined, the molecules are distributed in the simulation box. Since the diffusion along each

dimension is independent we can simply pick a random point uniformly distributed on the

respective plane. For triangulated mesh surfaces, triangles are picked randomly, weighted

by their area. Sampling a uniformly distributed random point in a triangle is done by

[Osada et al., 2002]

P (r) = (1 −√
µ1) ∗ p0 + (

√
µ1 ∗ (1 − µ2)) ∗ p1 + (µ2 ∗

√
µ1) ∗ p2, (2.42)

where µ1, µ2 are random numbers between 0 and 1. p0,p1,p2 are the three vertices of

the triangle.

Note that, in general, any interactions between the virtual molecules are not accounted

for. Therefore, fixed concentration boundary conditions only result in the same inside

and outside concentrations if no molecular interactions are simulated.

Fig 2.2. Boundaries. A (left, middle) In PyRID, the user can define different face groups.
Face groups can be used, e.g., to distribute molecules on specific regions of the mesh
surface (blue). When a compartment intersects with the simulation box, the inter-
secting triangles are assigned to a transparent class (yellow), as are the corresponding
edges that intersect with the boundary (purple lines). If boundary conditions are set
to ”fixed concentration” transparent triangles and edges act as absorbing boundaries
but in addition release new molecules into the simulation volume. (Right) The same is
the case for those parts of the simulation box border that is not intersecting with one
of the compartments. B For periodic boundary conditions, PyRID follows the minimal
image convention, i.e. a particle (black marker) only interacts (colored arrows) with
the closest image (grey marker) of the other particles in the system.

2.7 Reactions

In this section, methods to simulate reactions between proteins and other molecules are

introduced. Reactions include, for example, post-translational modifications such as phos-
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phorylation or ubiquitination or binding of ligands and ATP. This list could be continued.

In PyRID, reactions are described on several different levels. As a result of rigid bead

molecules consisting of one or several subunits, reactions can be defined either on the

molecule level or on the bead/particle level. In addition, reactions are categorized into

bi-molecular (second order) and uni-molecular (first order) and zero order reactions. Each

uni- and bimolecular reaction can consist of several different reaction paths, each belong-

ing to a different reaction type (for an overview see Fig. 2.3). Uni-molecular reactions

are divided into the following categories:

1. decay reactions,

2. fission reactions,

3. conversion reactions.

Decay reactions account for the degradation of proteins whereas fission reactions can

be used to describe ligand unbinding but also, e.g., the disassembly of protein complexes

or even the flux of ions in response to ion channel opening. Conversion reactions on the

other hand may be used to describe different folded protein states that change the protein

properties, post-translational modifications but also binding and unbinding reactions in

the case where we do not need to model the ligands explicitly (which is the case, e.g. if

we can assume an infinite ligand pool). Bi-molecular reactions are divided into

1. fusion reactions,

2. enzymatic reactions.

3. binding reactions

Fusion reactions can, e.g., describe protein complex formation or ligand binding.

As mentioned above, each uni- and bi-molecular reaction can consist of one or several

reaction paths. This is motivated by the minimal coarse-graining approach we take. Two

proteins, e.g., can have different sites by which they interact. However, these are not

necessarily represented in the rigid bead model. Similarly, a protein may convert to one

of a larger set of possible states. And again, the list could be continued. In the following

sections I will describe the methods by which reactions are executed in PyRID in more

detail.

2.7.1 Unimolecular reactions

Unimolecular reactions include fission, conversion, and decay reactions. These can be

efficiently simulated using a variant of the Gillespie Stochastic Simulation Algorithm

(SSA) [Erban et al., 2007, Gillespie, 1977]. Thereby, the time point of the next reaction is
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Fig 2.3. Reactions graph. PyRID supports various kinds of bimolecular and unimolecular
reactions. The trees give an overview about the possible reactions and reaction paths.
Bimolecular reactions are always associated with one or several particle pairs. A
reaction can always have one or several possible reaction products by having different
reaction paths.

sampled from the probability distribution of expected molecule lifetimes, assuming that in

between two time points no interfering event occurs. An interfering event could, e.g., be

a bi-molecular reaction. The naive way of simulating uni-molecular reactions would be to

check each time step whether the reaction will occur depending on its reaction rate. The

Gillespie SSA has the benefit of being exact (partially true since the simulation evolves

in finite, discrete time steps) and far more efficient, because we only need to evaluate a

reaction once and not each time step. For a single molecule having n possible reaction

paths each with a reaction rate ki, let kt =
∑n

i ki be the total reaction rate. Let ρ(τ)dτ

be the probability that the next reaction occurs within [t + τ, t + τ + dτ), which can be

split into g(τ), the probability that no reaction occurs within [t, t + τ) and probability

that a reaction occurs within the time interval dτ , which is given by ktdτ . Thereby,

ρ(τ)dτ = g(τ)ktdτ, (2.43)

where g(τ) = e−ktτ [Erban et al., 2007]. From the above equation we find P (τ) = 1 −
e−ktτ by integration. To sample from this distribution, we can use the inverse distribution

function.

τ = P−1(U) (2.44)
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where U is uniformly distributed in (0, 1). From U = P (τ) = 1 − e−ktτ , we find

P−1(U) = −log(1−U)
kt

. Since U is uniformly distributed in (0, 1), so is 1 − U . Thereby, we

can draw the time point of the next reaction from:

τ =
1

kt
ln
[ 1

U

]
, (2.45)

With the above method, we accurately sample from the distribution of expected molecule

lifetimes ρ(τ) = kte
−ktτ .

At the time point of the reaction, we can sample from the set of reaction paths by

a weighted random choice algorithm. Therefore, we compare a second random number,

uniformly distributed in (0, kt), with the cumulative set of reaction rates (k1, k1+k2, ..., kt).

The comparison can be made efficiently via a bisection algorithm.

Particle and molecule reactions

Because in PyRID, molecules are represented by rigid bead models, uni-molecular reac-

tions can occur either on the molecule level or on the particle level. As such, if a conversion

or decay reaction is defined on a molecule, executing the reaction will exchange the com-

plete rigid bead molecule by a product molecule, or, in the case of a decay reaction, will

remove the complete molecule from the simulation. On the other hand, if the reactions

are defined on a particle/bead type, only the particle will be affected. Whereas decay and

conversion reactions are handled very similar for molecules and particles, fission reactions

are handled slightly different. Therefore, PyRID offers three types of fission reactions:

1. fission reactions,

2. production reactions,

3. release reactions.

Standard fission reactions can only be defined on the molecule level and are executed

similar to ReaDDy [Hoffmann et al., 2019]. Here, the number of product molecules is

limited to two. In the case where educt and products are volume molecules, the product

molecules are placed within a sphere of radius Rfission. Therefore, an orientation vector

d uniformly distributed in the rotation space with a length <= Rfission is sampled. The

two products are then placed according to

r1 = r0 + w1d,

r2 = r0 − w2d,
(2.46)

where r0 is the center of the educt molecule. By default w1 = w2 = 0.5. However, for

different sized educts one may choose w1 and w2 proportional to the molecules diffusion
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coefficient or the diffusion length constant. If the educt and product molecules are surface

molecules, the procedure is equivalent except that the direction vector is sampled from a

disc on the mesh surface instead of from a sphere. If the educt is a surface molecule but

the product a volume molecule, in addition to the sphere radius, the direction needs to

be defined, .i.e whether the product is placed inside or outside the compartment. In both

cases, the direction vector is not sampled from the full rotation space but only within the

half-sphere cut by the triangle plane. Also, whenever a mesh compartment is present in

the simulation, a ray tracing algorithm is used to resolve any collisions of the products’

direction vectors with the mesh.

production reactions : In addition to the standard fission reaction, PyRID supports re-

actions with more than two products, which are here called production reactions, because

an educt molecule ”produces” a number of product molecules. This type of reaction

can, e.g., be used to simulate the influx of ions into a compartment via an ion channel.

The procedure by which the reaction is executed is very similar to the fission reaction.

However, here, the educt molecule is preserved but may change its type. Also, for each

product molecule, a separate direction vector within a sphere of radius Rprod is sampled.

Collisions with the mesh are handled as before, however, collisions between the product

molecules are not resolved.

release reaction: PyRID also allows for a fission type reaction to be defined on particles,

which is called a release reaction. Release reactions are limited to one particle and one

molecule product. When a release reaction is executed, the particle is converted to the

product particle type while releasing a product molecule either into the simulation volume

or the surface of a mesh compartment. The latter is only possible if the rigid bead molecule

the educt particle belongs to is also a surface molecule. Release reactions can, e.g., be used

to simulate the release of a ligand from a specific binding site of a rigid bead molecule.

The release reaction is introduced as the inverse of the particle absorption reaction (see

next section on bi-molecular reactions).

2.7.2 Bi-molecular reactions

Bi-molecular reactions cannot be evaluated the same way as uni-molecular reactions since

we cannot sample from the corresponding probability space as we have done for the uni-

molecular reactions, because we do not know when two molecules meet in advance. Here,

we use a reaction scheme introduced by Doi [1976], which is also used in the Brownian

dynamics simulation tool ReaDDy [Schöneberg and Noé, 2013, Hoffmann et al., 2019]. In

this scheme, two molecules can only react if the inter-molecular distance |rij| is below a
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Fig 2.4. Unimolecular reactions. Unimolecular reactions can be either defined on a particle
or on a molecule type. Their exist in total three different unimolecular reaction type
categories: fission, conversion and decay. For details see text.

reaction radius Rreact. The probability of having at least one reaction is then given by

p = 1 − exp
(
−

n∑
i

ki∆t
)
, (2.47)

where n is the number of reaction paths. Here, we assume that the time step ∆t is

so small that the molecule can only undergo one reaction. As such, the accuracy of the

simulation strongly depends on the proportion between the reaction rate and the time

step ∆t. If kt ·∆t > 0.1, PyRID will print out a warning. As for uni-molecular reactions,

each bi-molecular reaction can contain several reaction paths, each of which can be of a

different bi-molecular reaction type. PyRID supports the following bi-molecular reactions:

1. fusion reactions,

• molecule fusion,

• particle-molecule absorption,

2. enzymatic reactions (defined on molecules or particles),

3. binding reactions

Molecule fusion reactions are defined on molecule pairs. The product molecule is al-

ways placed relative to the position of the first educt. Thereby, in PyRID, the order in

which the educts of a reaction are set is important. For example, for a fusion reaction

A + B −−→ C the product is placed at RA +ω∆R, where RA is the origin of molecule A,

∆R is the distance vector between A and B and ω is a weight factor. For a B+A −−→ C,

the product is placed at RB +ω∆R. By default, ω = 0.5 such that the product is placed

in the middle between the educt and the order does not matter. However, for ω ̸= 0.5,

the order in which the educts have been set determines where the product is placed.
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Fig 2.5. Bimolecular reactions. Bimolecular reactions can be either defined on a particle
or on a molecule type. Their exist in total three different bimolecular reaction type
categories: enzymatic, fusion and binding. For details see text.

In addition to the fusion reaction, PyRID offers the particle-molecule absorption reac-

tion, which is also a reaction of the fusion type. However, here a molecule is absorbed

by the bead/particle of another molecule. The molecule is thereby removed from the

simulation and the absorbing particle is converted to a different type.

Binding reactions are defined between two particle/bead types and handled similar

to fusion and enzymatic reactions except that, if the reaction was successful, an energy

potential between the two educt particles is introduced such that these interact with each

other. Upon binding, the beads can change their respective type. Also, a bead can only

be bound to one partner particle at a time. Bonds can be either persistent or breakable.

In the latter case, the bond is removed as soon as the inter-particle distance crosses an

unbinding threshold. Similarly, unbinding reactions can be introduced by means of a

conversion reaction as bonds are removed if a particle or the corresponding rigid bead

molecule are converted to a different type.

Reactions between surface molecules

As for volume molecules, molecules that reside on the surface/in the membrane of a

compartment react with each other if the inter-particle distance is below the reaction

radius. However, PyRID only computes the euclidean distance between particles. There-

fore, however, surface reactions are only accurate if the local surface curvature is large

compared to the reaction radius. Accurate calculation of the geodesic distance on mesh

surfaces is computationally very expensive. Algorithms that allow for relatively fast ap-

proximations of geodesic distances and shortest paths such as the Dijkstra’s algorithm

often only provide good approximations for point far away from the source. Therefore,

the benefit of implementing such algorithms is questionable as reaction radii are on the

order of the molecule size and thereby usually small compared to the mesh size. However,
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much progress has been made in this field [Polthier and Schmies, 2006, Crane et al., 2017,

Trettner et al., 2021].

2.8 Potentials

PyRID supports any pairwise, short ranged interaction potential and external potentials.

The force is given by

F i = ∇i

(∑
Uext(ri) +

∑
i ̸=j

Upair(ri, rj)

)
(2.48)

PyRID comes with a selection of pairwise interaction potentials. PyRID does not

support methods such as Ewald summation and pair interaction potentials need to be

short ranged, i.e., they need to have a cutoff distance.

In the following I list the functions currently implemented in PyRID. However, any

short ranged, pair-wise interaction potential can be easily added using python.

Weak piecewise harmonic potential

The very same interaction potential is also used in ReaDDy [Hoffmann et al., 2019].

Uha(r) =



1
2
k(r − (d1 + d2))

2 − h, if r < (d1 + d2),

h
2
( rc−(d1+d2)

2
)−2(r − (d1 + d2))

2 − h, if d ≤ r < d + rc−(d1+d2)
2

,

−h
2
( rc−(d1+d2)

2
)−2(r − rc)

2, if d + rc−(d1+d2)
2

≤ r < rc,

0, otherwise

(2.49)

Harmonic repulsion potential

The very same interaction potential is also used in ReaDDy [Hoffmann et al., 2019].

U(r) =

{
κ
2
(r − σ)2, if r ≤ σ

0, otherwise ,
(2.50)

Continuous Square-Well (CSW) potential

The Continuous Square-Well (CSW) potential has been introduced in [Espinosa et al.,

2014].

UCSW (r) = −ϵCSW

2

[
1 − tanh

(r − rw
α

)]
. (2.51)

31



2 Theory and Methods

Pseudo Hard Sphere (PHS) potential

The Pseudo Hard Sphere (PHS) potential has been introduced in [Jover et al., 2012].

UHS =

{
λr(

λr

λa
)λaϵR[(σ

r
)λr − (σ

r
)λa ] + ϵR, if r < (λr

λa
)σ

0, if r < (λr

λa
)σ,

(2.52)

2.9 Observables

PyRID can sample several different system properties:

1. Energy

2. Pressure

3. Virial

4. Virial tensor

5. Volume

6. Molecule number

7. Bonds

8. Reactions

9. Position

10. Orientation

11. Force

12. Torque

13. Radial distribution function

Each observable (except the volume) is sampled per molecule type or molecule/particle

pair in the case of bimolecular reactions and bonds. In addition, values can be sampled

in a step-wise or binned fashion. Binning is especially useful when sampling reactions

as one is usually interested in the total number of reactions that occurred with a time

interval and not in the number of reactions that occurred at a specific point in time. In

the following I briefly describe how the radial distribution function and the pressure are

calculated in PyRID.

2.9.1 Radial distribution function

The radial distribution function is given by

g(r) =
Vbox

NiNj

〈∑
i ̸=j

δ(r − (ri − rj))

〉
=

Vbox

NiNj

1

V (r)

∑
i ̸=j

δ(r − (ri − rj)) (2.53)
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where V (r) = 4
3
π(r − ∆r)3 with ∆r being the sampling bin size. Vbox is the volume

of the simulation box and Ni and Nj are the total number of molecule types i and j

respectively.

2.9.2 Pressure

The pressure can be calculated from the virial or the the viral tensor. However, when

calculating the pressure for a system of rigid bodies/ rigid bead molecules, we need to be

careful how to calculate the virial tensor. Taking the inter-particle distances will result

in the wrong pressure. Instead, one needs to calculate the molecular virial [Glaser et al.,

2020], by taking the pairwise distance between the center of diffusion of the respective

molecule pairs:

Pmol = P kin
mol +

1

6V

N∑
i=1

N∑
j ̸=

⟨F ij · (Ri −Rj)⟩, (2.54)

where V is the total volume of the simulation box, F ij is the force on particle i exerted

by particle j and Ri,Rj are the center of diffusion of the rigid body molecules, not the

center of mass of particles i and j! In Brownian dynamics simulations, P kin
mol = NmolkBT ,

where Nmol is the number of molecules. Also, the origin of molecules is represented by

the center of diffusion around which the molecule rotates about, which is not the center

of mass [Harvey and de la Torre, 1980]. The net frictional force and torque act through

the center of diffusion. This is because when doing Brownian dynamics (and equaly for

Langevin dynamics), we do account for the surrounding fluid. Different parts of the

molecule will therefore interact with each other via hydrodynamic interactions/coupling.

As a result, the center of the molecule (around which the molecule rotates in response to

external forces) is not the same as the center of mass, which assumes no such interactions

(the molecule sites in empty space). However, for symmetric molecules, the center of mass

and the center of diffusion are the same.

2.10 Berendsen barostat

It is sometimes desirable to be able to do simulations in the NPT ensemble, e.g., in

preparation steps to release the system from stresses. This can become necessary, e.g.

when computing inter-facial properties of fluids or computing phase diagrams via direct

coexistence methods [Espinosa et al., 2019, 2020, Muller et al., 2020]. The Berendsen

barostat [Berendsen et al., 1984] is simple to implement and results in the correct target

density of the system, however, it does not sample from the correct statistical ensemble
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distribution as pressure fluctuations are usually too small. By scaling the inter-particle

distances, the Berendsen barostat changes the virial and thereby the system pressure. Per

time step, the molecule coordinates and simulation box length are scaled by a factor µ

that is given by:

µ = (1 − ∆t/τP (P0 − P ))1/3, (2.55)

where τP is the coupling time constant, P0 the target pressure. The above equation

applies to an isotropic system. For a anisotropic system the equation can be generalized

by substituting P with the pressure tensor. In the case of a rectangular simulation box,

all tensor remain diagonal and application of the anisotropic barostat is trivial.

2.11 Distribution of molecules

2.11.1 Volume molecules

The distribution of molecules in the simulation volume becomes a special problem when

we have mesh compartments and account for the excluded volume of the molecules. A

standard approach from molecular dynamics first loosely distributes the molecules in the

simulation box and then shrinks the simulation volume until a target density is reached.

This approach could be transferred to a system with mesh compartments. However, here,

we might also care about the compartment size. As such, we would need to choose a

larger than target compartment size and shrink it until we reach the target size. If the

density is too large, we may randomly delete molecules until the target density is also

reached. A second approach would be to utilize the Metropolis Monte Carlo method

[Allen and Tildesley, 2017] to distribute the molecules. However, this approach is more

time-consuming. A third approach, which is the one we use in PyRID, uses a so-called

Poisson-Disc sampling algorithm [Bridson, 2007]. This approach has the benefit of being

computationally efficient and relatively simple to implement. It, however, has the dis-

advantage of not reaching densities above 30% and is only well suited for approximately

spherical molecules. To distribute highly aspherical molecules, currently, the only useful

method that works well with PyRID is to distribute the molecules using Monte-Carlo

sampling and then resolve overlaps via a soft repulsive interaction potential. If no mesh

compartments are used, one may also use the Berendsen barostat at high pressure to

drive the system to a high density state. The Poison-disc sampling algorithm consists of

3 steps. 1) A grid is initialized, where the cell size is set to r/
√

3. 2) A sample point is

created and inserted into a list of active elements. 3) While the active list is not empty,

new random points around the annulus (r-2r) of the active sample points are created. If
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no other sample points exist within the radius r, the new sample point is accepted and

inserted into the grid and the active list. If, after k trials, no new sample point is found,

the active sample point is removed from the active list. For PyRID, this algorithm has

been extended to account for polydisperse particle distributions.

2.11.2 Surface molecules

The distribution of molecules on the surface of a mesh compartment is a little more

involved. Here, we utilize an algorithm introduced by Corsini et al. [2012]:

1. Generate a sample pool S by uniformly distributing points on the mesh surface.

2. Divide space into cells and count the number of samples in each cell.

3. Randomly select a cell weighted by the number of active samples in each cell (active

sample: sample that is not yet occupied or deleted).

4. Randomly select a sample from the selected cell.

5. Randomly choose a particle type of radius Ri (weighted by the relative number of

each type we want to distribute).

6. Check whether the distance of the selected sample to the neighboring samples that

are already occupied is larger or equal to Ri+Rj.

7. If True, accept the sample and add the molecule type and position to an occupied

sample list. Next, delete all other samples within radius Ri, as these won’t ever

become occupied anyway.

8. Update the number count of samples for the current cell.

9. While the desired number of molecules is not reached, return to 3. However, set a

maximum number of trials.

10. If there are no active samples left before we reach the desired molecule number and

the maximum number of trials, generate a new sample pool.

PyRID also allows the user to assign individual mesh triangles to a group and thereby

define surface regions on which to distribute molecules. Example results for the distri-

bution of volume and surface molecules using the above described methods are shown in

Fig. 2.6.

2.12 Fast algorithms for Brownian dynamics of reacting

and interacting particles

PyRID is written entirely in the programming language python. To make the simula-

tions run efficiently, PyRID heavily relies on jit compilation using Numba. In addition,
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Fig 2.6. Poisson Disc Sampling of polydisperse spheres. (A) Example distribution for
three different sized particle types confined to the volume of a mesh compartment .
(B) Poisson Disc sampling for surface molecules.(C) Poisson Disc sampling for surface
molecules but restricted to a surface region that is defined by a triangle face group.

PyRID uses a data-oriented design and specific dynamic array data structures to keep

track of molecules and their reactions efficiently. For this important part of the PyRID

implementation to not remain elusive, I will introduce the main data structures that make

PyRID run efficiently in this section. A very nice introduction/overview to the kind of

data structures used here has been written by Niklas Gray1.

2.12.1 Dynamic arrays in PyRID

In PyRID, molecules and particles constantly enter or leave the system due to reactions

and other events. Therefore, we need a data structure that can efficiently handle this

constant change in the number of objects we need to keep track of in our simulation. The

same holds true for the molecular reactions occurring at each time step. These need to

be listed and evaluated efficiently. Fortunately, variants of dynamic array data structures

are tailored for such tasks, of which we use two kinds, the tightly packed dynamic array

and the dynamic array with holes.

1https://web.archive.org/web/20220517145529/https://ourmachinery.com/post/data-structures-part-
1-bulk-data/
https://web.archive.org/web/20220314011542/https://ourmachinery.com/post/data-structures-part-
2-indices/
https://web.archive.org/web/20220517134710/https://ourmachinery.com/post/data-structures-part-
3-arrays-of-arrays/
https://www.gamedeveloper.com/programming/data-structures-part-1-bulk-data
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The tightly packed dynamic array (dense array)

A tightly packed dynamic array is a dynamic array (similar to lists in python or vectors

in C++) where elements can be quickly deleted via a pop and swap mechanism (Fig.

2.7). The problem with standard numpy arrays but also lists and C++ vectors is that

deletion of elements is very expensive. For example, if we want to delete an element at

index m of a numpy array of size n, numpy would create a new array that is one element

smaller and copies all the data from the original array to the new array. Also, if we want

to increase the size of a numpy array by appending an element, again, a new array will

need to be created, and all data needs to be copied. This is extremely computationally

expensive. One way to create a dynamic array (and python lists work in that way) is to

not increase the array size each time an element is added but increase the array size by

some multiplicative factor (usually 2). This consumes more memory but saves us from

creating new arrays all the time. Now we simply need to keep track of the number of

elements in the array (the length of the array) and the actual capacity, which can be much

larger. One straightforward method to delete elements from the array is just to take the

last element of the array and copy its data to wherever we want to delete an element

(swapping). Next, we pop out the last element by decreasing the array length by 1. We

call this type of array a ‘tightly packed array’ because it keeps the array tightly packed.

One issue with this method is that elements move around. Thereby, to find an element by

its original insertion index, we need to keep track of where elements move. One can easily

solve this issue by keeping a second array that saves for each index the current location

in the tightly packed array.

The dynamic array with holes

To store molecules and particles, we use a dynamic array with holes (Fig. 2.7). A dynamic

array with holes is an array where elements can be quickly deleted by creating ‘holes’ in

the array. These holes are tracked via a free linked list. The array with holes has the

benefit over the ‘tightly packed array’ that elements keep their original index because

they are not shifted/swapped at any point due to deletion of other elements. This makes

accessing elements by index a bit faster compared to the other approach. However, if the

number of holes is large, i.e. the array is sparse, this approach is not very cache friendly.

Also, iterating over the elements in the array becomes more complex because we need to

skip the holes. Therefore, we add a second array, which is a tightly packed array, that

saves the indices of all the occupied slots in the array with holes (alternatively, we could

add another linked list that connects all occupied slots). We can then iterate over all

elements in the holes array by iterating over the tightly packed array. Keep in mind,

however, that the order is not preserved in the tightly packed array, since, whenever we
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delete an element from the holes array, we also need to delete this element from the dense

array by the pop and swap mechanism. As such, this method does not work well if we

need to iterate over a sorted array. In that case, one should use a free linked list approach

for iteration. As with the tightly packed dynamic array, the array size is increased by a

multiplicative factor of 2 as soon as the capacity limit is reached.

Fig 2.7. Dynamic arrays. (A) Tightly packed dynamic array. A tightly packed dynamic
array uses a pop and swap mechanism to delete single elements. New elements are
appended. Thereby, however, elements change their position. To find elements, a
second, sparsely packed dynamic array is introduced that keeps track of the array
index of each element. (B) In sparsely packed dynamic arrays, elements are deleted
by creating holes. Holes are kept track of by a free linked list. Sparsely packed
dynamic arrays have the benefit of keeping the position of each element inside the
array fixed, which makes finding elements easy. However, this comes at the expense
of more memory usage. Also, iteration over a sparse dynamic array is not straight
forward as we must skip the holes in the array. Their exist different methods to iterate
over such an array. In PyRID, a second, densely packed array is introduced that keeps
the indices of all occupied slots. However, in order to be able to delete an element,
we now also need third, sparse array, that keeps track of the element indices in the
densely packed array.

Dynamic arrays used for reaction handling

The data structure we need to organize the reactions is a little bit more complex than a

simple dense, dynamic array or one with holes, as is used to keep track of all the rigid

body molecules and particles in the system. Instead a combination of different dynamic

arrays and a hash table is used (Fig. 2.10). Let me motivate this: Our data structure

needs to be able to do four things as efficient as possible:

1. Add reactions,

2. Delete single reactions,
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3. Delete all reactions a certain particle participates in,

4. Return a random reaction from the list.

We need to be able to delete a single reaction whenever this reaction is not successful.

We need to delete all reactions of a particle whenever a reaction was successful because,

in this case, the particle is no longer available since it either got deleted or changed its

type (except in the case where the particle participates as an enzyme). We need to be

able to request a random reaction from the list because processing the reactions in the

order they occur in the list would introduce a bias2. Points 1. and 2. could be easily

established with a simple dynamic array. However, point 3 is a bit more complicated but

can be solved with a doubly free linked list embedded into a dynamic array with holes.

This doubly linked list connects all reactions of a particle. To find the starting point (the

head) of a linked list within the array for a certain particle, we save the head in a hash

table (python dictionary). A doubly linked list is necessary because we need to be able

to delete a single reaction (of index k) from the linked list (point 2). As such, we need to

be able to reconnect the linked list’s ‘chain’. Therefore, we need to know the element in

the linked list that pointed to k (previous element) in addition to the element/reaction k

points to (next element). Another problem that needs to be solved is that a reaction can

be linked to at maximum two educts. Therefore, each next and previous pointer needs to

be 4-dimensional: We need one integer for each educt to save the next (previous) reaction

index and another integer 0,1 to keep track of whether in the next (previous) reaction,

the particle is the first or the second educt, because this may change from reaction to

reaction! Since the dynamic array, the doubly linked list is embedded, in has holes,

picking a random reaction from the list becomes another issue. This can, however, easily

be solved by adding another dynamic array (tightly packed), which keeps the indices of

all the reactions that are left in a tightly packed format. Picking a random reaction is

then as easy as drawing a uniformly distributed random integer between 0 and n, where

n is the length of the dense array.

2.13 Polydispersity

A problem that needs to be addresses, especially when using minimal coarse-graining

approaches with low granularity is polydispersity of particle radii. One extreme example

2Reactions of particles with a low index are added to the reaction list first, because particle distances
are evaluated in the order particles occur in the corresponding list (which is, at least in the beginning,
in ascending order, when the indices of particles have not yet been swapped around a lot). Thereby
particle one would always have a higher chance of having a successful reaction when competing with
other particles.
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Fig 2.8. Dynamic array for reactions. The dynamic array that keeps track of all the
reactions that need to be executed within a simulation time step consists a free doubly
linked list, a hash table (python dictionary), one densely packed and one sparsely
packed dynamic array.

would, e.g., be a simulation where proteins and synaptic vesicles are represented by single

particles. In this case classical linked cell list algorithms become highly inefficient.

The computationally most expensive part in molecular dynamics simulations is usually

the calculation of the pairwise interaction forces, because to calculate these, we need to

determine the distance between particles. When doing this in the most naive way, i.e.

for each particle i we iterate over all the other particles j in the system and calculate the

distance, the computation time will increase quadratic with the number of particles in

the system (O(N2)). Even if we take into account Newtons third law, this will decrease

the number of computations (O(1
2
N(N − 1))), but the computational complexity still is

quadratic in N. A straight forward method to significantly improve the situation is the

linked cell list approach [Allen and Tildesley, 2017] (pp.195: 5.3.2 Cell structures and

linked lists) where the simulation box is divided into n× n× n cells. The number of cells

must be chosen such that the side length of the cells in each dimension s = L/n, where L

is the simulation box length, is greater than the maximum cutoff radius for the pairwise

molecular interactions (and in our case also the bimolecular reaction radii). This will

decrease the computational complexity to O(14Nρs3), where ρ is the molecule density

(assuming a mostly homogeneous distribution of molecules). Thereby, the computation

time increase rather linear with N instead of quadratic (N2).

However, one problem with this method is that it does not efficiently handle polydis-

perse particle size distributions. This becomes a problem when doing minimal coarse

graining of proteins and other structures we find in the cell such as vesicles. As men-

tioned above, n should be chosen such that the cell length is greater than the maximum

cutoff radius. If we would like to simulate, e.g. proteins (r ≈ 2− 5nm) in the presence of
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synaptic vesicles (r ≈ 20 − 30nm), the cells become way larger than necessary from the

perspective of the small proteins.

One way to approach this problem would be, to choose a small cell size (e.g. based

on the smallest cutoff radius) and just iterate not just over the nearest neighbour cells

but over as many cells such that the cutoff radius of the larger proteins is covered. This

approach has a big disadvantages: Whereas for the smaller particles we actually reduce

the number of unnecessary distance calculations, we do not for the larger particles as we

iterate over all particles, also those, which are far beyond the actual interaction radius.

We can, however, still take advantage of Newton’s 3rd law. For this, we only do the

distance calculation if the radius of particle i is larger than the radius of particle j. If the

radii are equal, we only do the calculation if index i is smaller than index j.

A much better approach has been introduced by Ogarko and Luding [2012] that makes

use of a so called hierarchical grid. This approach is the one I use in PyRID. In the

hierarchical grid approach, each particle is assigned to a different cell grid depending on its

cutoff radius, i.e. the grid consists of different levels or hierarchies, each having a different

cell size. This has the downside of taking up more memory, however, it drastically reduces

the number of distance calculations we need to do for the larger particles and also takes

advantage of Newtons third law, enabling polydisperse system simulations with almost

no performance loss. The algorithm for the distance checks works as follows [Ogarko and

Luding, 2012]:

1. Iterate over all particles

2. Assign each particle to a cell on their respective level in the hierarchical grid

3. Iterate over all particles once more

4. Do a distance check for the nearest neighbour cells on the level the current particle

sites in. This is done using the classical linked cell list algorithm.

5. Afterwards, do a cross-level search. For this, distance checks are only done on lower

hierarchy levels, i.e. on levels with smaller particle sizes than the current one. This

way, we do not need to double check the same particle pair (Newtons 3rd law).

However, in this step, we will have to iterate over potentially many empty cells.

2.14 Simulation loop

At the beginning of each iteration, PyRID updates the position of all particles. Next,

PyRID determines the particle pair distances and based on that calculates the forces and

adds reactions to the reactions list. Then, the reactions are performed. Thereby, new

particles can enter the system, either by a fusion or a fission reactions. In principle, the

inter-particle distances as well as the forces would need to be updated. However, to save
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computation time this step is skipped. The only exceptions are binding reactions, for

which the force is calculated at the time of reaction execution. Thereby, in the beginning

of the next iteration, the reaction products diffuse freely as they did not experience any

forces yet and the trajectory of particles that have been in the system before also is

not altered due to the presence of the new molecules. Also, for molecules that where

converted to a different type the forces that are taken into account for the upcoming

position update are those that the molecule experienced before the type change. This is

of course an approximation but saves us from updating the particle distances twice. For

small integration time steps the error introduced by this scheme should be small. Also,

the product molecule placement itself does already not resolve any collisions and other

interactions with nearby molecules. Therefore, a very similar error is introduced anyway

since resolving collisions would be unfeasible and take up too much computation time.

For fission reactions the error will be very similar, no matter whether forces are updated

or not. For fusion reactions the the situation is slightly different because the educts will

leave behind an empty space that will be filled with new molecules. But, also here, the

error should be small for small time steps, which need to be considered anyhow as soon

as interactions are introduced. A problem will always arise as soon as the system is dense

and many products enter the system at ones. In this case, the integration time step should

be decreased such that only a few products enter the system.

An alternative to the above approach would be to calculate all the forces and add all the

reactions to the reactions list at the beginning of each iteration. Next we would update

the molecule positions and only then evaluate the reactions. This approach has the benefit

that for the product molecules, the forces will be evaluated directly after they have been

placed. However, because the products are only placed after the molecule positions are

updated, this results in a bias, especially for bimolecular reactions. The first approach

has the benefit that it does not introduce any bias in the case where we do not consider

interactions. Therefore, this is the approach I took with PyRID. In contrast, ReaDDy

does update the neighbouring list for the molecules twice per iteration. Once to evaluate

the reactions and another time to update the forces. However, in the worst case this could

increase computation time by a factor of two if the update of inter-molecular distances is

not optimized in some way. With the approach I took, forces and reactions are evaluated

in one loop over all particle pairs in the neighbouring list and pair distances are calculated

only once. One could try to optimize the update of pair distances after the reactions have

been executed, since the pair distances between most particles stays the same and we

only need to consider those particles that left or entered the system. However, this will

be future work.
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2.15 Visualization

For visualization, I have developed a blender addon for PyRID. In addition, PyRID can

visualize the different reactions using graphs. Graph visualization in PyRID is build upon

the pyvis library.

Fig 2.9. Visualization of moelcule trajectories with PyRIDs Blender addon. Left:
Example visualization with 50.000 particles. Right: GUI of the Blender addon.
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Fig 2.10. Examples of different reaction graphs.
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3 Results and validation

3.1 Anisotropic diffusion

To validate the implementation of the algorithms for translational and rotationional diffu-

sion introduced in 2.2 I use the same example as in [Ilie et al., 2015]. Here, the translational

and rotational diffusion tensors do not represent any specific molecule:

Dtt =

0.5 0 0

0 0.4 0

0 0 0.1

 nm2

ns
, (3.1)

Drr =

0.005 0 0

0 0.04 0

0 0 0.1

 rad2

ns
, (3.2)

In order to validate the algorithm, the mean squared displacement (MSD) and rotational

time correlation are compared with theory. The mean squared displacement (MSD) is

given by

MSD = ⟨|x(t + ∆t) − x(t)|2⟩ (3.3)

The rotational time correlation function is given by [de la Torre et al., 1999]:

MSD =
3

2
⟨(n̂(t + ∆t)n̂(t))2⟩ − 1

2
, (3.4)

where n̂(t) is some unitary vector that describes the current orientation of the molecule

at time point t. Fig. 3.1 compares the simulation results to the theoretical prediction,

which, for the rotational time correlation function, is given by a multi-exponential decay

function [de la Torre et al., 1999]:

P2,l(t) =
5∑

i=1

ai,lexp(−t/τi), (3.5)

where l ∈ 1, 2, 3. The relaxation times are given by
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τ1 = (6D − 2∆)−1

τ2 = (3D −Drr,b
1 )−1

τ3 = (3D −Drr,b
2 )−1

τ4 = (3D −Drr,b
3 )−1

τ5 = (6D − 2∆)−1.

(3.6)

Drr,b
1 , Drr,b

2 , Drr,b
3 are the eigenvalues of the rotational diffusion tensor Drr,b in the

molecule frame and D is the scalar rotational diffusion coefficient given by D = Tr(Drr,b)
3

.

Parameter ∆ is given by

∆ =

√
((Drr,b

1 )2 + (Drr,b
2 )2 + (Drr,b

3 )2 −Drr,b
1 Drr,b

2 −Drr,b
1 Drr,b

3 −Drr,b
2 Drr,b

3 ) (3.7)

The amplitudes of the individual exponential decays are given by

a1,l =
3

4
(F + G)

a2,l = 3n̂2
l,2n̂

2
l,3

a3,l = 3n̂2
l,1n̂

2
l,3

a4,l = 3n̂2
l,1n̂

2
l,2

a5,l =
3

4
(F −G),

(3.8)

with F = −1
3

+
∑3

k=1 n̂
4
k and G = 1

∆

(
−D +

∑3
k=1D

rr,b
k

[
n̂4
k + 2n̂2

mn̂
2
n

])
, where m,n ∈

{1, 2, 3} − {k}.

If we choose the normal vectors of each axis n̂l such that these are identical with the

basis vectors of the local frame, i.e. û1 = ex = [1, 0, 0], û2 = ey = [0, 1, 0], û3 = ez =

[0, 0, 1], a2− a3 vanish such that we end up with a double exponential decay (Fig. 3.1 B).

Fig. 3.1 shows that the rotation and translation propagators result in the correct mean

squared distribution and rotational time correlation.

3.2 Diffusion tensor of igG3

The methods outlined in section 2.3 have, at least to my knowledge, only been imple-

mented in the freely available tool Hydro++. The source code for Hydro++ is, however,
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Fig 3.1. MSD and rotational relaxation times of a rigid bead molecule matches
the theoretical prediction. (A) Mean squared displacement (MSD) of the rigid
bead molecule computed with PyRID. The displacement in each dimension (colored
markers) is in very good agreement with the theory (black line). (B) The rotational
relaxation of the rigid bead molecule is also in close agreement with the theory (gray
lines, Eqs.3.5-3.8) for each of the the rotation axes (colored markers).

not publicly available. To efficiently set up a system of rigid bead molecules, the method

has now also been implemented directly into PyRID. The implementation is tested against

Hydro++ using a model of the protein igG3 that comes with the documentation of Hy-

dro++. The results are in good agreement at up to 4 digits (Table 3.1). The slight

difference is probably due to numerical errors that accumulate when numerically invert-

ing the large supermatrices.

Fig 3.2. The diffusion tensor of igG3 calculated with PyRID. (A) Rigid bead molecule
representation of igG3 as found in de la Torre and Ortega [2013]. The black cross
marks the center of diffusion. (B) Translational and rotational diffusion tensor of
igG3. A comparison of the result from PyRID with those of the Hydro++ suite can
be found in table 3.1.
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Table 3.1. Translational and rotational diffusion tensors of the IgG3 rigid bead
model. Here, the result from PyRID is compared to the result gained from the
Hydro++ suite. We find small deviations originating from numerical errors that
build up mainly during the super-matrix inversion calculations.

Dtt Drr

Hydro++
0.0407 0.0 0.0

0.0 0.03581 0.00109
0.0 0.00109 0.0363

1.03e-03 0.0 0.0
0.0 3.80e-04 2.00e-05
0.0 2.00e-05 3.80e-04

PyRID
0.04077 0.0 0.0

0.0 0.03586 0.00108
0.0 0.00111 0.03634

1.04e-03 0.0 0.0
0.0 3.80e-04 2.00e-05
0.0 2.00e-05 3.80e-04

3.3 Fixed concentration boundary

As mentioned in the methods chapter, fixed concentration boundary conditions couple

the simulation box to a particle bath. Thereby, we can simulate, e.g., a sub-region within

a larger system without the need to simulate the dynamics of the molecules outside

simulation box directly. As an example system we take a 3d model of synapse. The post-

and presynaptic spine are both contained inside the simulation volume whereas dendrite

and axon are cutoff at the simulation box border (Fig. 3.3 A). We define three molecular

species: Species A diffuses in the volume outside the spines (in the extracellular space),

species B is located inside the postsynaptic spine and species C on the surface (within

the membrane) of the postsynaptic spine. All species consist of a single particle with

radius 2nm. The diffusion coefficient is calculated from the the Einstein relation where

the temperature is set to 293.15K. The viscosity is set to 1mPa · s and the time step

to 10ns. The simulation box size is set to 250nm · 250nm · 350nm. At the beginning

there are no molecules inside the simulation box. However, the outside concentration of

each species is set to 1000 molecules per total volume or total surface area respectively.

Thereby, there should be 1000 molecules of each species in the volume and on the surface

of each compartment as soon as the system has reached its equilibrium state. Indeed,

after about 0.5ms the system has reached equilibrium and the number of each species

fluctuates around the number 1000 (Fig. 3.3 B). As one would expect, species A fills the

simulation volume the fastest as the border area is the largest. Species B and C which

are located in the volume and on the surfaces of the postsynaptic compartment fill the

simulation volume at about the same rate.
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Fig 3.3. Fixed concentration boundary conditions result in the system approaching
a target molecule concentration per compartment. (A)We start with an empty
scene (left). However, because the molecule concentration of virtual molecules outside
the simulation box is above zero, surface and volume molecules enter the system via
the boundary (middle). After around 500 ns, the molecule concentration inside the
simulation box reaches the target concentration (A) right, (B).

3.4 Choosing the right reaction rate and radius

As described in [Schöneberg and Noé, 2013], the reaction radius Rreact may be interpreted

as the distance at which two particles can no longer be treated as moving independently,

because there interactions becomes significant. Furthermore, Schöneberg and Noé [2013]

suggest that the length scale of electrostatic interactions can be used to define Rreact. In

general, the reaction radius should not be so large that in dense settings molecules would

react with a partner that is not among the nearest neighbours. However, Rreact should also

not be smaller than the average change in the distance between molecules, which is given

by λAB =
√

4(Dt
A + Dt

B)∆t, where Dt
A and Dt

B are the translational diffusion constants

of two molecular species A and B. Otherwise, a molecule might pass many reaction

partners in between two time steps where the bi-molecular reactions are not evaluated

[Erban and Chapman, 2009]. However, even if λAB ≈ Rreact the system would still

correctly reproduce the deterministic rate equation description of the reaction kinetics.

Of course, in any case, Rreact should not be chosen smaller than the radius of excluded

volume of the molecule species in the presence of repulsive interactions. A description of

the reaction kinetics in terms of a system of differential equations assumes a well mixed

system. Therefore, the simulation results are also only directly comparable with the ODE

approach, if the reactions are reaction rate limited, not diffusion limited such that the

system has enough time to equilibrate in between reactions. Let us take a very simple

example where A + B −−→ C. If the reaction kinetics are rate limited, the reaction

products do not have enough time to mix with the rest of the system. Thereby, regions of

low educt concentration evolve where reactions had occurred, while in the regions where

no reactions occurred yet, the concentration of educts stays approximately same as in
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the beginning. Therefore, for the remaining educts in the system, the probability of

encounter stays approximately the same. In contrast, if we assume a well stirred system,

the concentration of educts would globaly decrease in time, lowering the probability of

educt encounters. Therefore, the reaction kinetics are sped up in the stochastic simulation

compared to the ode approach (Fig. 3.4). Interestingly, Schöneberg and Noé [2013] found

exactly the opposite effect, as the reaction kinetics where slowed down in the stochastic

simulation. The reason for this discrepancy in the results is unclear. However, I simulated

the very same system in ReaDDy and got the same result as with PyRID.

Fig 3.4. Diffusion limited bi-molecular reactions are not accurately described by

ODEs. Shown is the minimal system A + B
k1−−→ C with Rreact = 4.5nm and σA =

3nm, σB = 4.5nm, σC = 3.12nm. The same system has been used for validation of
ReaDDy in [Schöneberg and Noé, 2013]. The ODE approach to the description of
the reaction kinetics assumes a well mixed system. If the reaction rate is small, the
system has enough time to equilibrate in between reactions and the ODE approach
(black dotted lines) and the particle-based SSA approach (colored lines) match (A).
As the reaction rate increases (B-C) this is no longer the case, as the system is no
longer well mixed at any point in time. Here, the system can be divided into regions
of high and low educt concentrations (depicted by the small insets). Thereby, at the
onset, the reaction kinetics in the stochastic simulation are faster than predicted by
the ODE approach (B, C). However, when a critical mass of educts have reacted,
the slow diffusion has an opposite effect on the reaction kinetics as the probability of
isolated single educts to collide becomes lower than in the well mixed case. The slow
down effect is especially prominent in B, C at around 500 ns. The reaction kinetics
are therefore better described by two exponential functions instead of one.

Given a reaction radius Rreact, we would like to know at what reaction rate kt a sim-

ulation would match an experimentally measured macroscopic reaction rate kmacro. For

two non-interacting molecule species A and B with translational diffusion constants Dt
A

and Dt
B and λAB << Rreact, kmacro is given by [Erban and Chapman, 2009]

kmacro = 4π(Dt
A + Dt

B)

Rreact −

√
Dt

A + Dt
B

kt
tanh

(
Rreact

√
kt

Dt
A + Dt

B

) (3.9)
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Equation 3.9 can solved numerically for kt. Also, if the kt → ∞, 3.9 simplifies to

the Smoluchowski equation where we can express the reaction radius in terms of the

macroscopic reaction rate [Erban and Chapman, 2009]:

Rreact =
kmacro

4π(Dt
A + Dt

B)
(3.10)

In the limit where kt <<
Dt

A+Dt
B

R2
react

, Eq. 3.9 can be Taylor expanded and simplifies to

[Erban and Chapman, 2009]:

kt =
kmacro

4/3πR3
react

(3.11)

The above equations are, however, only valid in the case where molecules are represented

by single particles and also only in 3 dimensions. PyRID has a build in method to calculate

the reaction rates and radii based on equation 3.9.

3.5 Bi-molecular reactions between rigid bead molecules

The representation of molecules by single particles neglects the complex structure of

molecules. Bi-molecular reactions between proteins can occur via different reaction sites.

Therefore, also here, the isotropic picture breaks down. PyRID enables the simulation

of reactions between complex molecules having different reaction sites. Different reaction

sites are represented by beads/patches that are part of the rigid bead molecules topology.

Similar to uni-molecular reactions, bi-molecular reactions can be defined on particles or

molecules. However, because PyRID only computes the distances between the particles

in the system, also reactions that are defined on the molecule level need to be linked

to a particle type pair. If the the two particles are within the reaction distance and if

the reaction is successful, the reaction itself will, however, be executed on the respective

molecule types. As an example, we again consider the simple system A + B
k1−−⇀↽−−
k−1

C.

However, molecules A and B are each represented by two beads a1, a2 and b1, b2. Also,

we add another reaction path A + B
k2−−→ D. We now may define reactions for different

pair permutations of the available beads:

A(a1) + B(b1)
k1,R1−−−→ C

A(a1) + B(b1)
k2,R2−−−→ D

A(a1) + B(b2)
k3,R3−−−→ C

A(a2) + B(b2)
k4,R4−−−→ C

(3.12)
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where ki are the microscopic reaction rates and Ri the reaction radii. For better visu-

alization, also see figure 3.5 A and B. As such, molecules A and B can undergo fusion

to molecule C via three pathways, defined by three bead pairs (a1, b1), (a1, b2), (a2, b2).

Whereas for the particle pairs (a1, b2) and (a2, b2) only one reaction pathway is defined

respectively, for the particle pair (a1, b1) a second reaction path has been defined for the

fusion of molecules A and B to molecule C. We may also describe this system in terms

of a system of ODEs:

dA

dt
= −(k1

macro + k3
macro + k4

macro)AB − k2
macroAB + k−1

macroC

dB

dt
= −(k1

macro + k3
macro + k4

macro)AB − k2
macroAB + k−1

macroC

dC

dt
= (k1

macro + k3
macro + k4

macro)AB − k−1
macroC

dD

dt
= k2

macroAB

(3.13)

The macroscopic rate constants ki
macro can be calculated from Eq. 3.9. Note, however,

that for more complex molecules Eq. 3.9 does not hold true, because we would also need

to take into account the rotational motion of the molecule in addition to the translational

diffusion constant that describes the motion of the molecule center. In our example, the

bead motion is, however, close enough to that of a single spherical particle such that

the results from the Brownian dynamics simulation are in close agreement with the ODE

formulation (Fig. 3.5 C).

At this point one might argue that there is only little to no benefit of the rigid bead

model description over other SSA schemes. And in principle that is true. Systems such as

the above could also be modeled using single particle Brownian dynamics or even ODEs.

However, if we take into account the excluded volume of the molecules by introducing

a repulsive interactions between the beads, the reaction kinetics differ from the ODE

solution (Fig. 3.5 D). The bead radii are chosen equal to the reaction radius, where

σa1 = 2.0nm, σa2 = 1.5nm, σb1 = 2.0nm, σb2 = 3.0nm. Thereby, the molecules react

upon contact. For such simple molecules one could, however, neglect the bead topology

and approximate the molecules by single beads with repulsive interactions and get a

very similar result. For more complex molecules where the reaction volumes are much

more anisotropic, one would, however, expect a larger deviation from the repulsive sphere

approximation. The benefits of the rigid bead model approach become more important

when we consider binding reactions.

52



3 Results and validation

Fig 3.5. Bi-molecular reaction between two rigid bead molecules.(A) Depiction of
the two rigid bead molecules and the different reactions defined on their respective
particles/beads. (B) Reaction graphs showing the different reaction paths for the
fusion reactions A+B −−→ C and A+B −−→ D as well as the fission reaction C −−→
A+B. The lower right graph simply depicts the different reaction paths between the
two educts A and B without specifying the products. In total there are 4 paths (Eq.
3.12). (C) If not accounting for any repulsive interaction between molecules A and
B, the simulation results are in good agreement with the ODE description (Eq. 3.13).
(D) However, if we account for the excluded volume of the molecules by a repulsive
interaction potential, the results of the two approaches (particle dynamics and ODE
description) differ.

3.6 Reactions between surface molecules

As a model, let us consider a four component system and implement a simple autocatalytic

reaction scheme. The system consists of a freely diffusing transmembrane molecule U .

In addition, we add a second, freely diffusing, surface molecule P . Let U and P form a

complex B via a fusion reaction:

U + P
kon−−→ B (3.14)

The reaction rates are set to kon = 1e− 5ns−1 and Rreact = 4nm. In addition, we add
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an enzymatic/katalytic reaction:

B + P
kenz−−→ B + P′. (3.15)

We also account for a reverse reaction where

P′ k−enz−−−→ P. (3.16)

Here, kenz = 1e− 3ns−1, k−enz = 5e− 5ns−1 and Rreact = 4nm. The reaction product

P ′ has a much higher binding affinity for U :

U + P′ kon′
−−→ B, (3.17)

with k′
on = 1e− 2ns−1 and Rreact = 4nm (note that k′

on >> kon). The break up of the

complex is accounted for by a fission reaction

B
koff−−→ P + U. (3.18)

As expected from an autocatalytic reaction, the product B follows a sigmoid function

(Fig. 3.6). We may compare the simulation result to the corresponding ODE description.

The above system expressed in terms of a system of ODEs reads

dU

dt
= −U P kon

macro − U P ′ kon′
macro + B koff

macro

dB

dt
= U P kon

macro + U P ′ kon′
macro −B koff

macro

dP

dt
= −U P kon

macro − P B kenz
macro + P ′ k−enz

macro + B koff
macro

dP ′

dt
= B P kenz

macro − P ′ k−enz
macro − U Pact k

on′
macro

(3.19)

However, equation 3.9 is only valid in the 3D case and a solution for the 2D case

is difficult to derive as the rate constant is concentration dependent. A closed form

analytical expression has not yet been derived for the Doi scheme [Erban and Chapman,

2009, Galanti et al., 2019, Crank, 1980, Berg, 1984]. A more in depth discussion on this

topic and theoretical results for the Smoluchowski theory can be found in [Yogurtcu and

Johnson, 2015]. However, for the current system the simulation result can be matched

using a constant reaction rate k2D
macro = kmacro/5.6 despite the decay in molecule density
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over time (Fig. 3.6A). A closed form expression for kmacro is extremely useful when setting

up a reaction diffusion simulation. Even if results do not match exactly, the ODE approach

can help to choose the correct parameters for a particle-based simulation that might take

several order longer than solving the system of ODEs. Whereas the ODE description is

useful in many regards, we usually decide to do a particle based simulation because we

are interested in settings that are not well mixed, or where interactions between molecules

play a role.

3.6.1 Toy model of the PSD

As an example, where the particle-based approach becomes essential, we may transfer

the autocatalytic system from above to a simplified model of the postsynapse. In our

new setting, P , P ′ and B no longer diffuse but are fixed to a region that we interpret

as being the PSD. In addition, a 3d mesh of a postsynaptic spine is introduced to the

simulation and species U enters the simulation volume where the extrasynaptic region

intersects the simulation box via a fixed concentration boundary. P now represents a

receptor binding site, U the freely diffusing receptors and B the bound receptor or an

occupied binding site. In this adapted system the autocatalytic reaction scheme results

in receptor clustering (Fig. 3.6B). Note that whereas the reaction B + P
kenz−−→ B + P′

is implemented as an enzymatic reaction in PyRID, the physical interpretation could be

very different. For example, the conversion of P −−→ P′ could occur only indirectly via

the complex B and by a local signaling pathway that includes other molecules that we

do not model here explicitly. Important is only that this pathway is triggered by B and

that it is locally restricted for receptor clusters to evolve.

3.7 Hard sphere fluid

A hard sphere fluid is very useful for validation as there exist analytic expressions for the

radial distribution function but also for the pressure.

3.7.1 Radial distribution function

Figure 3.7 shows the radial distribution function for a hard sphere fluid that is modelled

using the harmonic repulsive interaction potential (Eq. 2.50). The sphere diameter is

set to 1nm. The simulation result is is in good agreement with a closed-form analytical

expressions of the hard sphere radial distribution function [Trokhymchuk et al., 2005]

(Fig. 3.7 B). The analytical expression for the radial distribution function is too long to

be presented here. The interested reader is referred to [Trokhymchuk et al., 2005].
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Fig 3.6. Autocatalytic reaction diffusion system in 2D. (A) Number of the different
molecular species evolving according to the reactions defined by equations 3.14-3.18.
The simulation results are matched by the ODE description by fitting the macroscopic
reaction rates (dotted grey lines). (B) Toy model of the PSD. Using the reaction
scheme defined by equations 3.14-3.18 but fixing the position of species P , P ′ and B
we observe the formation of species cluster (U in red, P in green, P ′ in blue and B in
yellow). (C) Evolution of the autocatalytic reaction system shown in (A) at different
points in time (U in red, P in green, P ′ in blue and B in yellow).

3.7.2 Pressure

We can use a hard sphere fluid for validation of the pressure calculation. For a hard sphere

fluid, an analytical expression for the pressure is given in terms of the radial distribution

function at contact and the second virial coefficient [Tao et al., 1992]:

p = ρkBT + ρ2kBTbg(σ+), (3.20)

where σ is the hard-sphere diameter, ρ the number density and b = (2π/3)σ3 the second

virial coefficient. The radial distribution function at contact can be approximated by the
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Fig 3.7. Hard-sphere radial distribution function. (A) The system is set up with a pack-
ing fraction of η = 0.3. The particle diameter is set to 1 nm and pair interactions occur
via a harmonic repulsive potential. (B) The resulting radial distribution function (blue
line) is in close agreement with theoretical prediction (red line). (C) The pressure of
the hard-sphere fluid obtained from simulations is also in close agreement with theory
[Trokhymchuk et al., 2005]. (D) A hard-sphere fluid NPT ensemble simulation. From
time 0.5 ns, the Berendsen barostat is activated and drives the system to the target
pressure P0 = 10 kJ/(mol nm3) = 16.6MPa = 166 bar .

solution to the Percus-Yevick equation [Hansen Jean-Pierre, 2013]:

gPY (σ) =
1 + η/2

(1 − η)2
, (3.21)

where η = (π/6)ρσ3 is the packing fraction. The pressure obtained from the simulation

of a hard sphere fluid is in close agreement with this theoretical result (Fig. 3.7 C). In

addition, the system does reach the target pressure using the Berendsen barostat (Fig.

3.7 D)
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3.8 LLPs of Patchy Particles

Liquid-liquid phase separation (LLPS) gained a lot of interest in recent years as more

experimental evidence has been gathered that many cell structures are formed by LLPS.

LLPS is a compelling mechanism as it might answer, how cells are able to organize in the

presence of a crowded environment with thousands of molecular species [Banani et al.,

2017]. Examples include nucleoli, Cajal bodies, stress granules but also the PSD [Zeng

et al., 2016]. In an number of papers Zeng et al. have shown that many of the proteins

found in the PSD are able to phase separate [Zeng et al., 2016, 2018, 2019]. We would

like to better understand the phase behaviour of the PSD as this might have an impact

especially on the expression of late phase LTP. PSD substructures change in morphology

within half an hour or stay rigid for many hours [Wegner et al., 2018], indicating that

the PSD might switch back and forth between crystalline, gel like and liquid states.

Another study has shown that synaptic nanomodules, including the PSD are reallocated

and change in size in response to synaptic plasticity induction [Hruska et al., 2018, Bosch

et al., 2014]. The issue that arises when investigating the phase behaviour of complex

molecules is that even modern computers are able to only simulate 10-20 small proteins

[Espinosa et al., 2020]. Therefore, coarse graining methods are needed. With models that

describe the disordered region of proteins on the level of amino-sequences simulations

with a few hundred copy numbers are already feasible [Dignon et al., 2018, Espinosa

et al., 2020]. A minimal coarse graining approach represents proteins by patchy particles

where the multivalent interaction sites of the proteins are modeled by attractive patches

whereas the excluded volume is represented by a core particle with repulsive interactions.

Espinosa et al. [2020] have used such a model to investigate the stability and composition

of biomolecular condensates. PyRID is well suited for simulations of patchy particles. For

validation I here reproduce one of the results from [Espinosa et al., 2020]. In their work,

patches interact via an attractive square well interaction potential [Espinosa et al., 2014]:

UCSW (r) = −ϵCSW

2

[
1 − tanh

(r − rw
α

)]
, (3.22)

where α = 0.01σ with σ being the hard sphere radius. The core particles interact via

a pseudo hard sphere potential [Jover et al., 2012]:

UHS =

{
λr(

λr

λa
)λaϵR[(σ

r
)λr − (σ

r
)λa ] + ϵR, if r < (λr

λa
)σ

0, if r < (λr

λa
)σ,

(3.23)

where λa = 49 and λr = 50. ϵR is the energy constant, rw is the radius of the attractive

well and α determines the steepness of the potential well edge. To ensure that each patch

does at maximum interact with one other patch at any time, in [Espinosa et al., 2020] rw
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has been set to 0.12σ. Here, I did the same, however, note that thanks to the ability to

define binding reactions in PyRID we could in principle also choose a larger radius for the

attractive interaction potential. To compute the phase diagram/the coexistence curve for

a patchy particle fluid, [Espinosa et al., 2020] used the direct coexistence method. The

system is initialized at a volume density of ≈ 0.3 in a cubic box with 2000 patchy particles

and at a temperature of 179.71K. Periodic boundary conditions are used. The integration

time step was set to 2.5ps. A small integration time step is necessary due to the very

short and steep attractive interaction between patches. Note that for Brownian dynamics

simulations one would ideally use a weaker, soft interaction potential. Also, for such

small integration time steps, the Brownian assumption is not necessarily valid anymore,

e.i. the diffusive motion is not accurately described by a Markov process. However, we

will see that, nevertheless, the results from [Espinosa et al., 2020] can be reproduced fairly

accurately using the Brownian dynamics approach. In the following I briefly describe the

direct coexistence method as used in [Espinosa et al., 2020]. In a first step, the patchy

particle fluid is equilibrated in an NPT simulation at zero pressure and an energy constant

ϵCSW that is high enough to ensure phase separation. Thereby, the value of ϵCSW depends

on the system temperature and the patchy particle valency. As a rule of thumb, kBT
ϵCSW

should be smaller than 0.1. For the equilibration phase I used the highest value that is

given in table 3.2 for the different valencies respectively. After the equilibration phase

the simulation box is elongated along the x-axis by a factor of 3. Thereby, a two phase

system is created with infinite dense and dilute sheets. The elongated system is then

simulated in the NVT ensemble for various different values of ϵCSW (see table 3.2). The

simulation is continued until the system reaches a new equilibrium, which was the case

after ≈ 2e7 steps at approximately 120 it/s. Thereby, a single simulation took ≈ 2 days.

In total 33 such simulations, 11 for each of the three valency cases, were executed on

a high compute cluster. In a final step, a concentration profile is sampled, from which

the volume fraction of the dense and dilute phase are estimated [Espinosa et al., 2019].

I found that the coexistence curves acquired with PyRID were in good agreement with

[Espinosa et al., 2020] (Fig. 3.8). However, for the 5-valency case, Espinosa et al. [2020]

found a slightly higher volume fraction in the dense phase close to the critical point. Also,

Espinosa et al. [2020] found that the coexistence curve shows minimum below the critical

for the 4-valence case, which I did not observe. The reason could lie in inaccuracies that

are a result of to the Brownian approximation. More probable is, however, that the choice

of the thermostat is responsible for the discrepancy as Espinosa et al. [2020] used a Nosé-

Hoover thermostat instead of a Langevin thermostat. However, I would argue that a

Langevin thermostat, or in this case overdamped langevin dynamics/Brownian dynamics,

represent the dilute phase more accurately as it accounts for the interaction with the

59



3 Results and validation

solvent molecules.

Table 3.2. Parameters for the patchy particle LLPS simulation.

valency ϵCSW in kJ
mol

3 sites 14.5 − 23.3

4 sites 12.0 − 20.0

5 sites 10.5 − 16.0
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Fig 3.8. LLPS of patchy particles. (A) Patchy particles with 3, 4 and 5 sites. Left: The
translational and rotational diffusion tensor. (B) Graph of the continuous square-well
potential (CSW) used for the attractive patches and the pseudo hard sphere potential
(PHS) used for the core particle. (C) Coexistence curves for the 3, 4 and 5 sided
patchy particle systems and comparison with the results from Espinosa et al. [2020].
(D) Side view showing the dilute and dense phase for the 4-sided patchy particle
system.

3.9 Benchmarks

To benchmark PyRID I directly compare it to ReaDDy. As a benchmark test I will

therefore use the same that has been used in [Hoffmann et al., 2019]. The system consists

of the molecule types A, B and C with radii 1.5nm, 3.0nm, and 3.12nm. The viscosity is

set to 1.0mPa · s, which is the value for water at about 293 Kelvin (20°C). The molecules

all interact via a harmonic repulsive potential [Hoffmann et al., 2019]:
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U(r) =

{
κ
2
(r − σ)2, if r ≤ σ

0, otherwise ,
(3.24)

where the force constant κ = 10kJ/mol. The interaction distance σ is given by the

radii of the interacting molecule pair. In addition, the molecules take part in the reaction

A + B
k1−−⇀↽−−
k−1

C. The rate for the fusion reaction is k1 = 0.001ns−1 and the reaction radius

Rreact = 4.5nm. The fission reaction rate is set to k−1 = 5 · 10−5ns−1 and the dissociation

radius is set equal to Rreact. The benchmark is carried out for different values of the total

initial molecule number Ntot, with NA = Ntot/4, NB = Ntot/4, NC = Ntot/2. The number

density is, however, kept constant at ρtot = 0.00341nm−3 by scaling the simulation box

accordingly. Simulations are carried out for 300ns with an integration time step of 0.1ns.

The result of the performance test is shown in figure 3.9 B. For particle numbers between

1.000 and 10.000, the computation time per particle update stays approximately constant

at 1.25µs, which corresponds to about 800.000 particle updates per second. For particle

numbers above 10.000, the performance starts to drop slightly (Fig. 3.9 B, blue line). The

benchmark test has been performed on a machine with an Intel Core i5-9300H with 2.4

GHz and 24 GB DDR4 RAM. Interestingly, PyRID always performed better than ReaDDy

for this benchmark test (Fig. 3.9 B, yellow line). Also, ReaDDy scaled less linear for large

particle numbers than PyRID. Shown are the results for ReaDDy ran on the sequential

kernel. In addition, I performed the benchmark test for the parallel kernel but the results

were always worse. However, in [Hoffmann et al., 2019], where the same benchmark

test has been used, ReaDDy scaled much better and there was almost no performance

drop even at 100.000 particles for the sequential kernel (Fig. 3.9 B, green line). Also,

performance increased significantly when using the parallel kernel (down to ≈ 0.5µs).

The performance has been tested on a slightly faster but comparable machine with an

Intel Core i7 6850K processor at 3.8GHz and 32GB DDR4 RAM. The faster machine is

probably the cause for the better performance at particle numbers below 10.000 particles

in comparison with my results. However, I can only speculate why ReaDDys’ scaling

behavior for large particle numbers is much less linear in my benchmark test and why

multi-threading only let to a performance loss. The reason might be that in [Hoffmann

et al., 2019] ReaDDy was compiled for their benchmark system whereas I used the binaries

distributed by the developers behind ReaDDy. Nonetheless, the benchmark test shows

that PyRIDs performance is very much comparable with ReaDDy, and at least in certain

situation PyRID can even outperform ReaDDy. Thereby, for a system with 104 particles,

PyRID is able to perform at ≈ 80it/s and ≈ 7 · 106/day. At an integration time step of

1ns, therefore, 7ms per day can be simulated on medium machine.
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3.9.1 Polydispersity

As mentioned in the methods chapter, PyRID uses a hierarchical to efficiently handle

polydispersity. As a test, a two component system is used. Both components consist

of a single particle. Component A has a radius of 10nm, component B has a radius

of 2.5nm. The simulation box measures 75nm · 75nm · 75nm. The simulation volume

is densely packed with both components such that we reach a volume fraction of 52%.

The simulation ran for 1e4 steps. When not using the hierarchical grid approach but the

classical linked cell list algorithm, PyRID only reaches about 80000 particle updates per

second (pu/s) on average (Fig. 3.9 A). However, when using the hierarchical grid, more

than 500000 pu/s are reached (Fig. 3.9 A). If instead of the two component system we

only simulate a one component system, PyRID also only reaches about 500000 pu/s (Fig.

3.9 A). Thereby, PyRID performs similar independent of whether the system is mono- or

polydisperse.

Fig 3.9. Performance test of the hierarchical grid approach. (A) Performance hierarchi-
cal grid. (B) Performance comparison between PyRID and ReaDDy. On a benchmark
system with an Intel Core i5-9300H with 2.4 GHz and 24 GB DDR4 RAM, PyRID
(blue line) outperforms ReaDDy (yellow). However, Hoffmann et al. [2019] obtained
a better performance and especially scaling for ReaDDy on a different machine with
an Intel Core i7 6850K processor at 3.8GHz and 32GB DDR4 RAM (green line).
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PyRID is a fast and flexible tool for particle-based reaction diffusion simulations with pair-

interactions. However, a challenge remains in that PyRID is not able simulate processes

that take several seconds or even minutes. However, in cell biology we find many pro-

cesses that act on such time scales. This is true for signaling processes, for self-assembly

processes, e.g., of clathrin, and for protein trafficking. Other tools that follow a similar

approach such as ReaDDy [Hoffmann et al., 2019, Schöneberg and Noé, 2013] also do

not provide methods that would enable simulations on such long time scales. Tools such

a MCell [Kerr et al., 2008] and Smoldyn [Andrews, 2016] enable simulations on larger

time scales but do not resolve molecular structure and are not able to simulate protein

binding and assembly. However, alternative reaction-rate based approaches have been

developed that account for molecule structure, binding, and diffusion. A prominent ex-

ample is NERDSS [Varga et al., 2020] that is able to resolve fast binding reactions as well

as processes on large time and- spatial scales. In NERDSS, molecules are represented by

rigid bodies, similar to PyRID. Also, excluded volume is accounted for by rejection sam-

pling. However, NERDSS avoids any energy interaction functions but instead molecules

”snap” into place in a predefined way when a binding reaction is executed. Thereby,

assembly processes can be simulated very efficiently. Still, since the resulting assembly

has a predefined form NERDSS is not able make predictions about the structure of pro-

tein assemblies. Also, binding reactions are not orientation dependent which can result

in unrealistic binding events, whereas in PyRID orientation dependence is accounted for

by construction. Also, with NERDSS, one relies on reaction rates that have been mea-

sured either in experiment or by molecular dynamics simulations to describe assembly and

disassembly processes. However, also with PyRID such processes can not accurately be

modeled without exactly specifying the energy functions of the binding interaction which

can even be harder than estimating rates. At last, due to the lack of interaction forces

in NERDSS, any physical properties that are derived from the interaction forces or the

energy functions can not be computed and flexible chains of beads or molecules are not

supported. Still, such solely rate based approaches are very promising if one is interested

in the kinetics of complex assembly processes and could also be a valuable addition to

PyRID. In principle the PyRID framework would allow rigid body assembly growth so
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this could be a useful future extension. However, as indicated above, there exist many

settings in which we need to include energy functions and where, as a result, there is a

an upper limit for the integration time step that we can choose. We can slightly shift

this threshold towards larger time steps by using different approximations to the inter-

molecular interaction energy functions but even then we are restricted to integration time

steps ≤ 1ns. As such we need to speed up computation, e.g. by parallelization. For

very large system simulations many molecular dynamics tools such as LAMMPS support

parallel implementations of their algorithms for the message passing interface standard

(MPI). However, here, we only gain a benefit in speed for large systems as message pass-

ing otherwise becomes a bottle neck. For intermediate sized system such as those that

we want to simulate with PyRID containing 10.000-100.000 particles, algorithms that run

on the GPU are much more promising. A good example is the molecular dynamics tool

HooMD [Anderson et al., 2020] that is optimized for the GPU and that can reach speed

ups of up to two order of magnitude compared to a single CPU and more than one order

of magnitude compared to a modern multi-core CPU [Anderson et al., 2020]. As such,

bringing particle-based reaction diffusion simulations to the GPU could be the key for

simulations on time scales of even minutes. The question remains to what degree the

required algorithms and data structures can be efficiently ported to the GPU. However,

this is beyond the scope of this work. At last, machine learning long found its way into

MD simulations and is used in coarse graining, molecular kinetics and more [Noé et al.,

2020].

4.1 On hydrodynamic interactions

As mentioned above, PyRID does not account for hydrodynamic interactions between

molecules because, in this case, the kind of simulations for which PyRID has been devel-

oped would become unfeasible. Here, the 6Nx6N diffusion tensor of the entire system is

needed to propagate the molecule positions. As the molecule positions change each time

step, this diffusion tensor needs to be recalculated each iteration. A discussion on this

topic in terms of many particle simulations can also be found in [Geyer, 2011]. A new

algorithm that scales O(N2) has been introduced by [Geyer and Winter, 2009] making

larger simulations with hydrodynamic interactions more feasible.

4.2 Limitations of the Brownian dynamics approach

Brownian dynamics simulations come with some limitations that one should consider

[Snook, 2007]: In BD, only time steps are considered that are much longer than the velocity

65



4 Discussion

relaxation time τrel = m
γ

= 2ρr2

9η
. Due to the strong damping forces in a viscous fluid the

kinetic energy of large molecules rapidly dissipates. Thereby, the erratic movement of the

molecules in between two time steps is memory less and can be described as a Markov

process. However, when accounting for interactions between molecules, the integration

time step must also not be too small such that forces stay approximately constant in one

time step. This becomes a problem for small interacting molecules or atoms, where the

time step needs to be chosen small enough to resolve the interactions but large enough

for the the approximation of over-damped kinetics. Thereby, if the molecules are of

similar size as the solvent molecules, BD may not correctly describe the dynamics. Winter

and Geyer [2009] introduced a Langevin integration scheme that enables the accurate

simulation of small molecules. Here, we will however use the well established BD scheme

introduced by Ermak and McCammon [1978]. Another thing to keep in mind is that BD

is only applicable for Newtonian fluids. Also, since the details of the interaction between

solvent particles and bead particles are neglected, simulations of molecule aggregation

may not be correctly described. However, in the case where aggregation is dominated by

the interaction between the proteins, the latter may be negligible.
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5.1 Appendix A

Since the method goes beyond what is found in most textbooks, I will give an introduction

to the method in the following. However, I will not derive the methods in detail since

this has been done in various publications [Torre and Bloomfield, 1977a,b, Carrasco and

de la Torre, 1999a,b, de la Torre et al., 2007].

5.1.1 The Oseen tensor and hydrodynamic interaction between

beads

The Oseen tensor has first been introduced by Oseen in 1927 (for reference also see [Dhont,

1996]). The Oseen tensor emerges from the solution of the Stokes equations (linearization

of the Navier-Stokes equations) for the flow velocity field in case of a force acting on a

point-like particle (F (r) = F 0δ(r − rp)) which is immersed in a viscous liquid. In this

case, the solution to the Stokes equation can be written as a linear transformation (due

to its linearity, any solution to the Stokes equation has to be a linear transformation):

v(r) = T (r − rp) · F , (5.1)

where rp is the Cartesian coordinate vector of the point-like particle. T is called

the hydrodynamic interaction tensor, Oseen tensor or Green’s function of the Stoke’s

equations. The above solution is also called Stokeslet [Oseen, 1927]:

T (r) =
1

8πηr
·
(
I +

r ⊗ r

r2

)
, (5.2)

where η is the fluid viscosity and ⊗ is the outer product and I is the identity matrix.

Thereby, T relates the fluid flow velocity at some point r to a force acting at another

point rp in the fluid. As mentioned above, the mobility matrix of a system of dispersed

subunits/beads can be related to the Oseen tensor. The mobility µ is defined as the ratio

of a particle‘s drift velocity and the applied force; thereby, the Oseen tensor represents an

approximation for the hydrodynamic interaction part of the mobility matrix. Bloomfield
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et al. [1967] first introduced a formulation of the translational mobility tensor for a system

of multiple dispersed beads using the Oseen tensor to describe the hydrodynamic inter-

action between the beads, and by assigning each bead its friction coefficient ξi = 6πη0σi

[Carrasco and de la Torre, 1999a]:

µtt
ij =δij(6πη0σi)

−1I

+ (1 − δij)(8πη0rij)
−1(

I +
r ⊗ r

r2

) (5.3)

Here, the first term is just the mobility coefficient of a single particle with radius σi

in the absence of any other beads. The second term is the Oseen tensor. However, since

the Oseen tensor only considers the distance between the bead centers but neglects their

finite radius σi Torre and Bloomfield [1977a] established a correction to the Oseen tensor

for nonidentical spheres (also see de la Torre et al. [2007]):

T ij =
1

8πηr
·
(
I +

rij ⊗ rij

r2ij
+

σi + σj

r2ij

(1

3
I − rij ⊗ rij

r2ij

))
, (5.4)

The corrected friction tensor then reads [Carrasco and de la Torre, 1999b]:

µtt
ij =δij(6πη0σi)

−1I + (1 − δij)(8πη0r
−1
ij )(I + P ij)

+ (8πη0r
−3
ij )(σ2

i + σ2
j )(I − 3P ij),

(5.5)

where P ij =
(
I + r⊗r

r2

)
. The mobility tensor for rotation, however, not correcting for

the bead radii, is [Carrasco and de la Torre, 1999b]:

µrr
ij =δij(8πη0σ

3
i )−1I

+ (1 − δij)(16πη0r
3
ij)

−1(3P ij − I).
(5.6)

Here, again, the first term is just the rotational mobility of the single bead and the

second term accounts for the hydrodynamic interactions. In this formulation, there is

still a correction for the bead radii missing. This correction consists of adding 6η0VmI

to the diagonal components of the rotational friction tensor Ξrr
O , where Vm is the total

volume of the rigid bead molecule [de la Torre and Rodes, 1983, Carrasco and de la Torre,

1999b].

The rotation-translation coupling is given by [Carrasco and de la Torre, 1999b]:
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µrt
ij = (1 − δij)(8πη0r

2
ij)

−1ϵr̂ij, (5.7)

where ϵ is the Levi-Civita tensor. µtt,µrr,µrt describe the mobility of a multi-sphere

system with hydrodynamic interactions. The above can be extended to account for rigid

bead molecules [Carrasco and de la Torre, 1999b] as outlined in the next section.

5.1.2 The friction tensor for rigid bead molecules

Here, we closely follow [Carrasco and de la Torre, 1999b]. To get an expression for the

friction tensor of a rigid bead molecule, we start by considering a system of N free spherical

beads in a fluid with viscosity η0. Each sphere laterally moves at some velocity ui and

rotates with some angular velocity ωi. The spheres will experience a frictional force and

torque F i,T i. In the non-inertial regime (Stokes regime), the relationship between the

force/torque and the velocities is linear:

F i =
N∑
j=1

ξttij · uj + ξtrij · ωj (5.8)

T i =
N∑
j=1

ξrtij · uj + ξrrij · ωj. (5.9)

The ξabij , a, b ∈ {t, r} are the (3x3) friction matrices, connecting the amount of friction

a particle i experiences due to the presence of particle j moving through the fluid at

velocities uj,ωj. We may rewrite Eqs. 5.8, 5.9 in matrix form as:(
F

T

)
=

(
ξtt ξtr

ξrt ξrr

)(
U

W

)
, (5.10)

where F = (F 1, ...,FN)T , T = (T 1, ...,TN)T and U = (u1, ...,uN)T , W = (ω1, ...,ωN)T .

Here ξab, a, b ∈ {t, r} are of dimension (3Nx3N), forming the friction supermatrix of di-

mension (6N,6N). The inverted friction supermatrix is the mobility supermatrix.(
µtt µtr

µrt µrr

)
=

(
ξtt ξtr

ξrt ξrr

)−1

(5.11)

Next, we consider not a system of N free beads, but a rigid bead model, i.e., the beads

are rigidly connected. Thereby, all beads move together with some translational velocity

uO. Let the body’s frame of reference lie at the center of diffusion of the bead model

rO and let ω be the angular velocity of the rigid bead model. Then, in addition to the

translational velocity of the molecule’s center, each bead experiences a translation velocity
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due to the rotation ω × ri, where ri is the position vector from the molecules origin rO

(in the body frame of reference). Thereby, the total velocity is:

ui = uO + ω × ri (5.12)

The force that a single bead experiences due to the movement of all the other beads is:

F i =
N∑
j=1

ξttij · (uO + ω × rj) + ξtrij · ω, (5.13)

and the torque that a single bead experiences due to the movement of all the other

beads is:

T P,i =
N∑
j=1

ξrtij · (uO + ω × rj) + ξrrij · ω. (5.14)

From these expressions, we get the total force acting at the rigid body origin by sum-

mation over all beads:

F =
N∑
i=1

N∑
j=1

ξttij · (uO + ω × rj) + ξtrij · ω (5.15)

For the total torque, however, we get an extra term. T P,i is only the torque acting on

bead i relative to it’s center, i.e., the center of the sphere. Thereby, this only describes

the amount of rotation bead i would experience around its center due to the movement

of all the other beads. However, the force F i acting on bead i due to the movement of

the other beads also results in a torque with which bead i acts on the rigid bead models

center rO:

ri × F i = ri ×
( N∑

j

ξttij(uO + ω × rj) + ξtrijω
)

(5.16)

Thereby, the total torque acting on the rigid bead model’s origin is:

TO =
N∑
i

T P,i+ri×F i =
N∑
i=1

N∑
j=1

ξrtij ·(uO+ω×rj)+ξrrij ·ω+ri×
(
ξij

tt(uO+ω×rj)+ξtrijω
)
.

(5.17)

The above can be transformed into a general expression in simpler matrix form. For

this, a little trick can be used to get rid of the cross product by turning ω×r into the dot

product −A · ω (note: the sign changed, because of the anticommutativity of the cross

product). After some rearranging, we end up with:
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F =
( N∑

i=1

N∑
j=1

ξttij

)
· uO +

( N∑
i=1

N∑
j=1

−ξttij ·Aj + ξtrij

)
· ω (5.18)

T =
( N∑

i=1

N∑
j=1

ξrtij + Aiξ
tt
ij

)
· uO +

( N∑
i=1

N∑
j=1

ξrtij ·Aj + ξrrij − Aiξ
tt
ijAj + Aiξ

tr
ij

)
· ω. (5.19)

If we now write this in matrix form, similar to the free bead example from above, we

get: (
F

TO

)
=

(
Ξtt Ξtr

Ξrt Ξrr

)(
uO

ω

)
, (5.20)

Where we call Ξ the friction tensor of the rigid bead molecule [Carrasco and de la

Torre, 1999b] :

Ξtt =
N∑
i=1

N∑
j=1

ξttij

Ξtr
O =

N∑
i=1

N∑
j=1

(−ξttij ·Aj + ξtrij)

Ξrt
O =

N∑
i=1

N∑
j=1

(Aj · ξttij + ξrtij)

Ξrr
O =

N∑
i=1

N∑
j=1

(ξrrij − ξrtij ·Aj + Ai · ξtrij −Ai · ξttijAj)

(5.21)

The ξ, are calculated from the inverse of the mobility supermatrix (Eq. 5.11).

A super Matrix M = [[M 1,M 2], [M 3,M 4]] is invertible, if both the diagonal blocks,

M 1 and M 4 are invertible The inverse of a (2x2) supermatrix can be calculated by

[Varadarajan, 2004], [Deligne and Morgan, 1996]:

T 1 = (M 1 −M 2M
−1
4 M 3)

−1

T 2 = −M−1
1 M 2(M 4 −M 3M

−1
1 M 2)

−1

T 3 = −M−1
4 M 3(M 1 −M 2M

−1
4 M 3)

−1

T 4 = (M 4 −M 3M
−1
1 M 2)

−1

(5.22)
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R. F. Murphy, T. Prüstel, J. A. Theriot, and A. M. Uhrmacher. Quantifying the

roles of space and stochasticity in computer simulations for cell biology and cellular

biochemistry. Molecular Biology of the Cell, 32(2):186–210, jan 2021. doi: 10.1091/

mbc.e20-08-0530.

75

https://doi.org/10.7554/elife.27744


Bibliography

Sebastian Kmiecik, Dominik Gront, Michal Kolinski, Lukasz Wieteska, Aleksandra Elzbi-

eta Dawid, and Andrzej Kolinski. Coarse-grained protein models and their applications.

Chemical Reviews, 116(14):7898–7936, jun 2016. doi: 10.1021/acs.chemrev.6b00163.

Gregory L Dignon, Wenwei Zheng, and Jeetain Mittal. Simulation methods for liq-

uid–liquid phase separation of disordered proteins. Current Opinion in Chemical En-

gineering, 23:92–98, mar 2019. doi: 10.1016/j.coche.2019.03.004.

Jorge R. Espinosa, Adiran Garaizar, Carlos Vega, Daan Frenkel, and Rosana Collepardo-

Guevara. Breakdown of the law of rectilinear diameter and related surprises in the

liquid-vapor coexistence in systems of patchy particles. The Journal of Chemical

Physics, 150(22):224510, jun 2019. doi: 10.1063/1.5098551.

Rex A. Kerr, Thomas M. Bartol, Boris Kaminsky, Markus Dittrich, Jen-Chien Jack

Chang, Scott B. Baden, Terrence J. Sejnowski, and Joel R. Stiles. Fast monte

carlo simulation methods for biological reaction-diffusion systems in solution and on

surfaces. SIAM Journal on Scientific Computing, 30(6):3126–3149, jan 2008. doi:

10.1137/070692017.

Joshua A. Anderson, Jens Glaser, and Sharon C. Glotzer. HOOMD-blue: A python pack-

age for high-performance molecular dynamics and hard particle monte carlo simulations.

Computational Materials Science, 173:109363, feb 2020. doi: 10.1016/j.commatsci.2019.

109363.

Beatriz Carrasco and Jose Garcia de la Torre. Hydrodynamic properties of rigid particles:

Comparison of different modeling and computational procedures. Biophysical Journal,

76(6):3044–3057, jun 1999a. doi: 10.1016/s0006-3495(99)77457-6.

Gregory L. Dignon, Wenwei Zheng, Young C. Kim, Robert B. Best, and Jeetain Mittal.

Sequence determinants of protein phase behavior from a coarse-grained model. PLOS

Computational Biology, 14(1):e1005941, jan 2018. doi: 10.1371/journal.pcbi.1005941.

Valentina Tozzini. Coarse-grained models for proteins. Current Opinion in Structural

Biology, 15(2):144–150, apr 2005. doi: 10.1016/j.sbi.2005.02.005.

J Garcia de la Torre. Building hydrodynamic bead–shell models for rigid bioparticles of

arbitrary shape. Biophysical Chemistry, 94(3):265–274, December 2001. doi: 10.1016/

s0301-4622(01)00244-7.

Tihamér Geyer and Uwe Winter. An o(n2) approximation for hydrodynamic interactions

in brownian dynamics simulations. The Journal of Chemical Physics, 130(11):114905,

mar 2009. doi: 10.1063/1.3089668.

76



Bibliography

Maciej D lugosz and Joanna Trylska. Diffusion in crowded biological environments: ap-

plications of brownian dynamics. BMC Biophysics, 4(1), mar 2011. doi: 10.1186/

2046-1682-4-3.

Donald L. Ermak and J. A. McCammon. Brownian dynamics with hydrodynamic

interactions. The Journal of Chemical Physics, 69(4):1352–1360, aug 1978. doi:

10.1063/1.436761.

Eric Dickinson, Stuart A. Allison, and J. Andrew McCammon. Brownian dynamics with

rotation–translation coupling. J. Chem. Soc., Faraday Trans. 2, 81(4):591–601, 1985.

doi: 10.1039/f29858100591.

R B Jones and P N Pusey. Dynamics of suspended colloidal spheres. Annual Review

of Physical Chemistry, 42(1):137–169, oct 1991. doi: 10.1146/annurev.pc.42.100191.

001033.

Ioana M. Ilie, Wim J. Briels, and Wouter K. den Otter. An elementary singularity-

free rotational brownian dynamics algorithm for anisotropic particles. The Journal of

Chemical Physics, 142(11):114103, mar 2015. doi: 10.1063/1.4914322.

David Baraff. Physically based modeling: Rigid body simulation. SIGGRAPH Course

Notes, 2001. doi: 10.1145/97880.97881.

Ioana M. Ilie, Wouter K. den Otter, and Wim J. Briels. A coarse grained protein model

with internal degrees of freedom. application to α-synuclein aggregation. The Journal

of Chemical Physics, 144(8):085103, feb 2016. doi: 10.1063/1.4942115.

William Rowan Hamilton. II. on quaternions or on a new system of imaginaries in algebra.

The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,

25(163):10–13, jul 1844. doi: 10.1080/14786444408644923.

Marc Niethammer, Raul San Jose Estepar, Sylvain Bouix, Martha Shenton, and Carl-

Fredrik Westin. On diffusion tensor estimation. In 2006 International Conference of

the IEEE Engineering in Medicine and Biology Society. IEEE, aug 2006. doi: 10.1109/

iembs.2006.259826.

Guillaume Chevrot, Konrad Hinsen, and Gerald R. Kneller. Model-free simulation ap-

proach to molecular diffusion tensors. The Journal of Chemical Physics, 139(15):154110,

oct 2013. doi: 10.1063/1.4823996.

V. Bloomfield, W. O. Dalton, and K. E. Van Holde. Frictional coefficients of multisubunit

structures. i. theory. Biopolymers, 5(2):135–148, feb 1967. doi: 10.1002/bip.1967.

360050202.

77



Bibliography

Jose Garcia De La Torre and Victor A. Bloomfield. Hydrodynamic properties of macro-

molecular complexes. i. translation. Biopolymers, 16(8):1747–1763, aug 1977a. doi:

10.1002/bip.1977.360160811.

B. Carrasco and J. Garcia de la Torre. Improved hydrodynamic interaction in macromolec-

ular bead models. The Journal of Chemical Physics, 111(10):4817–4826, sep 1999b. doi:

10.1063/1.479743.
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Frank Noé, Alexandre Tkatchenko, Klaus-Robert Müller, and Cecilia Clementi. Machine

learning for molecular simulation. Annual Review of Physical Chemistry, 71(1):361–390,

apr 2020. doi: 10.1146/annurev-physchem-042018-052331.

81



Bibliography

Tihamér Geyer. Many-particle brownian and langevin dynamics simulations with the

brownmove package. BMC Biophysics, 4(1), apr 2011. doi: 10.1186/2046-1682-4-7.

Ian Snook. The Langevin and Generalised Langevin Approach to the Dynamics of Atomic,

Polymeric and Colloidal Systems. Elsevier, 2007. doi: 10.1016/b978-0-444-52129-3.

x5000-7.

Uwe Winter and Tihamer Geyer. Coarse grained simulations of a small peptide: Effects

of finite damping and hydrodynamic interactions. The Journal of Chemical Physics,

131(10):104102, 2009. doi: 10.1063/1.3216573.

Jose Garcia De La Torre and Victor A. Bloomfield. Hydrodynamics of macromolecular

complexes. II. rotation. Biopolymers, 16(8):1765–1778, aug 1977b. doi: 10.1002/bip.

1977.360160812.

J K G Dhont. An Introduction to Dynamics of Colloids. Elsevier, 1996. doi: 10.1016/

s1383-7303(96)x8001-3.

C. W. Oseen. Neuere methoden und ergebnisse in der Hydrodynamik. Akadem. Verlagsges.

Leipzig, 1927.

82


	Introduction
	The cell environment
	Modeling approaches

	Theory and Methods
	Rigid bead molecules
	Propagation of translational and angular motion
	Quaternion propagator

	Mobility tensor for rigid bead models
	Center of Diffusion
	Compartments
	Triangulated meshes
	Volume molecules
	Surface molecules

	Boundary Conditions
	Fixed concentration boundary conditions

	Reactions
	Unimolecular reactions
	Bi-molecular reactions

	Potentials
	Observables
	Radial distribution function
	Pressure

	Berendsen barostat
	Distribution of molecules
	Volume molecules
	Surface molecules

	Fast algorithms for Brownian dynamics of reacting and interacting particles
	Dynamic arrays in PyRID

	Polydispersity
	Simulation loop
	Visualization

	Results and validation
	Anisotropic diffusion
	Diffusion tensor of igG3
	Fixed concentration boundary
	Choosing the right reaction rate and radius
	Bi-molecular reactions between rigid bead molecules
	Reactions between surface molecules
	Toy model of the PSD

	Hard sphere fluid
	Radial distribution function
	Pressure

	LLPs of Patchy Particles
	Benchmarks
	Polydispersity


	Discussion
	On hydrodynamic interactions
	Limitations of the Brownian dynamics approach

	Appendix
	Appendix A
	The Oseen tensor and hydrodynamic interaction between beads
	The friction tensor for rigid bead molecules



